
© 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for

all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.

Automating Structural Testing of C Programs: Experience with PathCrawler∗

Bernard Botella Mickäel Delahaye St́ephane Hong-Tuan-Ha Nikolai Kosmatov
Patricia Mouy Muriel Roger Nicky Williams

CEA LIST, Software Reliability Laboratory
91191 Gif-sur-Yvette France

Email: firstname.lastname@cea.fr

Abstract

Structural testing is widely used in industrial verifica-
tion processes of critical software. This report presents
PathCrawler, a structural test generation tool that may be
used to automate this activity, and several evaluation crite-
ria of automatic test generation tools for C programs. These
criteria correspond to the issues identified during our ongo-
ing experience in the development of PathCrawler and its
application to industrial software. They include issues aris-
ing for some specific types of software. Some of them are
still difficult open problems. Others are (partially) solved,
and the solution adopted in PathCrawler is discussed. We
believe that these criteria must be satisfied in order for the
automation of structural testing to become an industrial re-
ality.

1 Introduction

Structural testing (also called white-box testing) is meant
to assure that the software has been thoroughly exercised by
execution of the test set. Classically, it is used at unit level
and, depending on the test strategy, the coverage criterion
is all-branches, all-paths or MC/DC (see for example [19]).
When the tests are constructed manually, the coverage ex-
hibited by the test sets with respect to these criteria is often
less than 80%, and even lower for a more complicated cri-
terion such as MC/DC.

Automation of structural test generation is possible. In
the past, tools were based on random strategies with cover-
age results not much better than those obtained by humans.
Today they are based on a precise analysis of the source
code of the software and a conversion of each elementary
objective (branch, path or partial path) into a constraint sys-
tem which is then solved using some automatic constraint
solving techniques [32, 13, 14]. They provide an input data

∗This work has been partially funded by the ANR-PREDIT MAS-
COTTE, ITEA SPICES, ITEA TWINS and ANR CAVERN projects.

set and may allow the user to restrict the possible values for
these data to take contextual information into account dur-
ing testing. The user has then to execute, using some spe-
cialised tool, the program with this input data set on the tar-
get platform, to verify the results against specification and
check the effective coverage.

Automation of test case generation brings obvious bene-
fits. In critical systems processes where structural testing
is required by the development norm, manually creating
tests from the specification fails to achieve complete sat-
isfaction of the coverage criterion. In this case, automatic
methods help to reach the objectives which are not covered
and provide corresponding path conditions that may be used
to refine the specification if needed. They may also deter-
mine whether the objectives which are not yet covered are
really infeasible. When the development process does not
impose any structural testing activity, the use of a structural
test generation tool is a way to increase the quality of the
software with a very low cost overhead.

Automatic structural test generators may also be used for
other purposes, for example they may be used to find execu-
tion errors [11, 27, 7], to verify conformity to specifications
[28, 2, 8] or to verify non-functional properties [30].

In this article we present the PathCrawler structural test
generator for C and C++ programs. We briefly introduce
its functions and the method it uses to generate test cases
(Section 2). Our contribution is to expose the main dif-
ficulties such a tool has to face in order to work on real
industrial software and the solutions that we have adopted
in PathCrawler (Section 3). These difficulties were identi-
fied during our ongoing experience in the development of
PathCrawler and its application to industrial software.

2 Presentation of the PathCrawler Tool

PathCrawler is a test generation tool for C functions re-
specting the all-paths criterion, or thek-path criterion (for
a givenk ≥ 0), which restricts the generation to the paths

1

1 int bsearch(int a[4], int key) {
2 int low = 0; int high = 3;
3 while (low <= high) {
4 int mid = low + (high-low)/2;
5 int midVal = a[mid];
6 if (midVal < key) {
7 low = mid+1;
8 } else if (midVal > key) {
9 high = mid-1;

10 } else {
11 return mid;
12 }
13 }
14 return -1;
15 }

Figure 1. C function for binary search

with at mostk consecutive iterations of each loop. The user
provides the ANSI C source files containing the function
under test, which we denote byf , and other functions called
by f . Test generation with PathCrawler contains two major
phases.

In the first phase, PathCrawler extracts the inputs off

and instruments the source code in order to create a test
driver. This phase uses the CIL library [25]. The extracted
inputs include the formal parameters off and the non con-
stant global variables. A test case will provide a value for
each input off . The user may remove some variables from
the inputs, define the domains of the inputs, a test context
and an oracle.

The second phase generates test cases forf with the se-
lected criterion. Implemented in Eclipse constraint logic
programming environment1, the generator combines sym-
bolic execution in constraints and concrete execution. The
paths off are explored in a depth-first search. Let us de-
scribe (a simplified version of) the PathCrawler test genera-
tion method in more detail.

We can denote an execution path by a sequence of deci-
sions, e.g.a+, b−, c−, d+, wherea, b, c, d designate control
points (in some conditional or loop statements). A decision
is denoted by the control point followed by a “+” if the con-
dition is true, and by a “−” otherwise. The mark “⋆” after
a decision indicates that the other branch has already been
explored (it will be explained in detail below).

The generator needs the test driver with the instrumented
version off to trace the execution path on a generated test
case. The generator’s main loop is rather simple: given a
partial program pathπ, the main idea is to symbolically ex-
ecute it using constraints. A solution of the resulting con-
straint solving problem will provide a test case exercising
a path starting withπ. Then the trick is to use concrete
execution of the test case on the instrumented version to ob-
tain the complete path. The partial paths are explored in a
depth-first search.

For symbolic execution of a program in constraints,

1http://www.eclipse-clp.org

PathCrawler maintains:

• a memory state of the program at each moment of sym-
bolic execution. It is basically a mapping associating
a value to a symbolic name. The symbolic name is a
variable name or an array element. The value is a con-
stant or a logical variable.

• the current partial pathπ in the program. When a test
case is successfully generated for the partial pathπ, the
remaining part of the path it activates is denoted byσ.

• a constraint store with the constraints added by the
symbolic execution of the current partial pathπ.

The method contains the following steps:

(Initialisation) Create a logical variable for each input and
associate it with this input. Set initial values of initialised
variables. Add constraints for the precondition. Let the ini-
tial partial pathπ be empty. Continue to (Step 1).

(Step 1) Letσ be empty. Symbolically execute the partial
pathπ, that is, add constraints and update the memory ac-
cording to the instructions inπ. If some constraint fails,
continue to (Step 4). Otherwise, continue to (Step 2).

(Step 2) Call the constraint solver to generate a test case,
that is, concrete values for the inputs, satisfying the current
constraints. If it fails, go to (Step 4). Otherwise, continue
to (Step 3).

(Step 3) Run the test driver with traced execution off on
the test case generated in (Step 2) to obtain the complete
execution path. The complete path must start withπ. Save
the remaining part intoσ. Continue to (Step 4).

(Step 4) Letρ be the concatenation ofπ andσ. Try to find in
ρ the last unmarked decision, i.e. the last decision without
a “⋆” mark. If ρ contains no unmarked decision, exit. Oth-
erwise, ifd± is the last unmarked decision inρ, setπ to the
subpath ofρ befored±, followed byd∓

⋆
(i.e. the negation of

d± marked as already processed), and continue to (Step 1).
Notice that Step 4 chooses the next partial path in a

depth-first search. It changes the last unmarked decision in
ρ to look for differences as deep as possible first, and marks
a decision by a “⋆” when its negation (i.e. the other branch
from this node in the tree of all execution paths) has already
been fully explored. For example, ifρ = a+ b−

⋆
c− d− e+

⋆
,

the last unmarked decision isd−, so we take the subpath of
ρ before this decisiona+ b−

⋆
c−, and addd+

⋆
to it to obtain

the new partial pathπ = a+ b−
⋆

c− d+
⋆

.
We will use as a running example the C function shown

in Figure 1. To simplify the example, we limit the array size
to 4, and the domain of elements to[0, 100]. The function
bsearch takes two parameters: an arraya of four integers
∈ [0, 100] and an integerkey ∈ [0, 100]. Given thata is
sorted in ascending order, the function returns the index of
some occurrence ofkey in a if key is present ina, or−1

2

(1) Memory Constrs
a[0] 7→ X0 〈pre〉
a[1] 7→ X1

a[2] 7→ X2

a[3] 7→ X3

key 7→ X4

π = ǫ

Test case 1
X0 = 5
X1 = 17
X2 = 42
X3 = 70
X4 = 23

σ = 3+ 6+ 3+ 6− 8+ 3−

→

(2) Memory Constraints
[. . .] 〈pre〉
low 7→ 2 0 ≤ 3, X1 < X4

high 7→ 1 2 ≤ 3, X2 ≥ X4

mid 7→ 2 X2 > X4

midVal 7→ X2 2 ≤ 1

π = 3+ 6+ 3+ 6− 8+ 3+
⋆

 infeasible →

(3) Memory Constraints
[. . .] 〈pre〉
low 7→ 2 0 ≤ 3, X1 < X4

high 7→ 3 2 ≤ 3, X2 ≥ X4

mid 7→ 2 X2 ≤ X4

midVal 7→ X2

π = 3+ 6+ 3+ 6− 8−

⋆

Test case 2
X0 = 25
X1 = 40
X2 = 47
X3 = 97
X4 = 47

σ = ǫ

. . .

Figure 2. Depth-first generation of all-paths
test cases for bsearch, where → denotes ap-
plication of Steps 2, 3 and denotes appli-
cation of Steps 4, 1.

otherwise. Here, the precondition contains the definition
of the variables’ domains and the property thata is sorted
in ascending order. We assume the oracle is provided, and
focus on the generation of test data.

Figure 2 shows how our method proceeds on this exam-
ple. The empty path is denoted byǫ. In the state (1), we
see that the initialisation step associates a logical variable
Xi to each input, i.e. to each element ofa and tokey, and
posts the precondition〈pre〉 to the constraint store. Here,
〈pre〉 denotes the constraints:X0, . . . ,X4 ∈ [0, 100] and
X0 ≤ X1 ≤ X2 ≤ X3.

As the original prefixπ is empty, Step 1 is trivial and
adds no constraints. Step 2 consists of choosing a first
test case. In Step 3, we retrieve the complete path traced
during the concrete execution of Test case 1, and obtain
σ = 3+ 6+ 3+ 6− 8+ 3−. (We use abbreviated path nota-
tion where we write decisions only.)

Step 4 setsρ = 3+ 6+ 3+ 6− 8+ 3− and, therefore, the
new path prefixπ = 3+ 6+ 3+ 6− 8+ 3+

⋆
by negating the

last not-yet-negated decision. Now, Step 1 symbolically
executes this path prefix in constraints for unknown in-
puts, and the resulting state is shown in (2). Let us ex-
plain this execution in detail. First, the execution of line
2 addslow 7→ 0 andhigh 7→ 3 into the memory. The
conditional expression at line 3 is interpreted as a constraint
0 ≤ 3 after replacing the variables by their current values
in the memory map. The assignments of lines 4 and 5 add

mid 7→ 1 andmidVal 7→ X1, X1 being the current sym-
bolic value ofa[1]. The conditional expression at line 6
gives the constraintX1 < X4, sinceX4 is the symbolic
value associated tokey. At line 7, the memory is updated
with low 7→ 2. Line 3 adds the trivial constraint2 ≤ 3.
Lines 4 and 5 update the memory map withmid 7→ 2 and
midVal 7→ X2. Because of the minus sign, the expression
at line 6 is negated and gives the constraintX2 ≥ X4. Line
8 posts the constraintX2 > X4. Line 9 changes the value
of high to 1 in the memory. Finally the last conditional
node3+ gives the false constraint2 ≤ 1, so the path prefix
is infeasible. The last constraint obviously fails, which is
detected by our solver at the propagation step while posting
the constraint, and Step 1 continues directly to Step 4. The
intermediate states were not detailed in Figure 2.

We are now going from (2) to (3) in Figure 2. Step 4
computes the complete pathρ = 3+ 6+ 3+ 6− 8+ 3+

⋆
. As

3+
⋆

means that its negation has already been explored, the
new prefixπ is 3+ 6+ 3+ 6− 8−

⋆
. Next, Step 1 symbolically

executes this partial path. It can be done from the initial
state (1). However, in practice, backtracking allows us to
come back to the closest intermediate state (here, the state
just beforeX2 > X4 was posted by the previous execu-
tion), from which we can reach the current path prefix in
a minimal number of steps. Next, Step 2 generates Test
case 2. Step 3 setsσ to ǫ. Step 4 computes the new prefix
π = 3+ 6+ 3+ 6+

⋆
, and so on. The reader will find applica-

tions of this method to other examples in [31, 32, 16].

3 Towards an Automatic Testing Tool

Over the last few years we have applied the PathCrawler
prototype to many examples of industrial software, espe-
cially embedded software. Scaling-up to programs of hun-
dreds or thousands of lines of code has not really proved
a problem. PathCrawler is robust and efficient, capable of
generating test cases which cover millions of paths, which
can have hundreds of control points, of a function under
test. However, real industrial software raises other issues
that are not seen in trials on academic examples.

In this Section, we start by examining the properties
needed for a test generation tool to satisfy a coverage cri-
terion. We discuss how we can realistically interpret and
apply the rather naive and badly-defined all-paths criterion.
We explain how the user can avoid detecting irrelevant bugs
by defining the context in which the function under test will
be called, its precondition. We discuss features of real pro-
grams that are rarely addressed in the literature, such as li-
brary calls and floating-point numbers. Real programming
languages have very complicated semantics, which makes
it difficult to translate branch conditions into constraints.
There are the classic problems of aliasing and pointers in
C and the semantics of C++ is even more complicated than
that of C. We examine the factors that influence the effi-

3

ciency of automatic test-case generation. Finally we point
out that automatic test-case generation must be specialised
to treat the types of software that occur very frequently in
embedded systems.

These are the criteria which we believe must be satisfied
by test-case generation tools in order for the automation of
structural testing to become an industrial reality.

3.1 Soundness and Completeness

Soundness and completeness of generated test cases are
important evaluation criteria for automatic test generation
tools because they are necessary for 100% satisfaction of
coverage criteria.

Test case generation issoundwhen each test case acti-
vates the test objective (path, branch, instruction, etc.)for
which it was generated andcompletewhen absence of a test
for some test objective means this test objective is infeasi-
ble.

The soundness of the PathCrawler method presented in
Section 2 is verified by concrete execution of generated test
cases on the instrumented version of the program under test.
The path trace obtained by the concrete execution of a test
case confirms that this test case really executes the path for
which it was generated.

Completeness can only be guaranteed when symbolic
execution of all features of the program is correct and when
constraint solving terminates within a reasonable timeout
for all paths. This is difficult for real-life code, as explained
in Sections 3.5, 3.6 and 3.8.

Note that completeness and the verification of soundness
on the instrumented code actually require symbolic execu-
tion of program features to be adapted to the target platform
(compiler optimisations, libraries, floating-point unit,etc)
of the function under test and also PathCrawler’s execution
of the tests on the instrumented code to be carried out in the
same environment. PathCrawler is currently only adapted to
our Linux development environment and Intel-based plat-
form.

The depth-first search of the PathCrawler method en-
ables iteration over all feasible paths of the program, which
is necessary for completeness, for all terminating programs
with finitely many paths. Programs containing infinite loops
cannot be tested in any case in the way we propose here as
the execution of the program on the test inputs would never
terminate. Any infinite loop which has been introduced as
the result of a bug can only be detected by a timeout on the
execution of each test-case on the instrumented code. Ter-
minating programs with an infinite number of paths must
have an infinite number of inputs and this is another class
of programs that cannot be tested using the PathCrawler
method.

Unlike concolic tools such as CUTE [27] and DART
[11], for which soundness and completeness are lower pri-

orities than the treatment, even if partial, of all programs,
PathCrawler guarantees satisfaction of the all-paths crite-
rion for a certain class of programs.

3.2 Limiting Path Explosion

The practical limitation to completeness is the number
of feasible execution paths in the program under test. Pro-
grams do not need to have very many lines of code, or even
control points, to have an astronomical number of execu-
tion paths. Such a combinatorial explosion in the number
of execution paths can be due to 3 factors:

• long sequences of conditional instructions : the num-
ber of paths can be2l wherel is the number of con-
ditions. All feasible execution paths of such programs
can often only be covered if the pre-condition on the
context in which the program is to be tested (see Sec-
tion 3.4) happens to eliminate many potential paths.
Otherwise, path coverage may have to be abandoned
in favour of branch coverage.

• Loops with a variable number of iterations : for each
path containing 0 iterations of such a loop, there is an-
other path containing 1 iteration etc. up to the maxi-
mum number of iterations. In many cases, the regular-
ity in the loop means that if the test results are correct
for all paths with a small number of iterations, then
they will be for all paths with any number of itera-
tions. The all-feasible-paths criterion can then be re-
laxed to a criterion such as the classick-path, proposed
by PathCrawler (and described in [31]), in which only
feasible paths with up tok iterations of such loops are
tested, wherek is chosen by the user. However, the
danger of thek-path criterion is that some path suf-
fixes after exit from the loop may only be feasible in
case of more thank iterations of the loop.

• Function calls : many test-case generators treat func-
tion calls by inlining the source code of called func-
tions if it is available (for the case where the source
code is not available, see Section 3.3). This combines
the number of paths in the function under test with the
number of paths in the called function, which greatly
increases the number of paths to be tested and may re-
sult in many tests covering different paths through the
called function for the same path in the calling func-
tion. In this case too, the best solution seems to be a
more precise interpretation of the all-paths criterion. If
bottom-up unit testing is being carried out then called
functions will be path-tested before the calling func-
tion and it is sufficient to test just all feasible paths of
the calling function.

The following table shows experimental results of test
generation with different criteria for the functionMerge

4

(see [32]) that takes two sorted arrays of length≤ 10 and
merges them to a new sorted array. We see that thek-path
criterion considerably reduces test generation time and the
number of test cases.

criterion k = 2 k = 5 k = 10 k = 15 all-paths
time (s) 0.33 0.80 37.2 876.65 3 407.98
♯ test cases 19 337 12 798 216 371 705 431

In the case of loops and of function calls, we would
like to explore additional iterations of the loop or addi-
tional paths only when it is necessary in order to cover all
paths of the function under test, i.e. when a path in the
rest of the function under test is only feasible in the con-
text of additional loop iterations or an unexplored path in
the called function. We are currently studying the modifica-
tion of PathCrawler’s strategy to enable this minimal explo-
ration. Our approach is based on the storage of infeasible
path suffixes used in [23], optimised by taking into account
the dependencies between the infeasible suffix and the path
through the loop or function call. A similarly “lazy” ap-
proach is proposed for the treatment of function calls in
[10], but this approach stores not infeasible path suffixes
but the result of symbolic execution of each path through a
called function which has already been explored.

Among other approaches to the path explosion problem
in all-paths testing, CUTE [27] proposes to approximate
function return values by concrete values, but this endangers
completeness. Path exploration can be guided by particular
heuristics [7], or using a combination of random testing and
symbolic execution [17]. State-caching, a technique arising
from static analysis, is used by [4] to prune the paths which
are not interesting with respect to given test objectives.

3.3 Treating Library Function Calls

Real code often contains calls to functions whose source
code is not available but many structural test-case genera-
tion tools cannot treat these calls in a satisfactory way. In
PathCrawler we propose a novel method to overcome this
limitation of structural testing when the called function is
a library or off-the-shelf software component (COTS) for
which there is a detailed description of the functionality and
restrictions on usage. As far as we know, it is the only work
which addresses this problem.

When the source code of the called function is not avail-
able, testing traditionally uses stubs [24]. These are built
manually in an ad-hoc way and are often an incomplete de-
scription of the called function, which can lead to incom-
plete testing. They cannot be used for the automatic gener-
ation of unit tests.

Our method is based on a formal specification of the
called function. This is why it can also be used when the
source code of the called function is available and the called
function has already been validated using a formal specifi-
cation. Indeed, we believe that to achieve increased test

automation users are often prepared to formalise the speci-
fications of called functions if the specification language is
appropriate.

We therefore propose a language which uses the same
function names and types as the C code and corresponds to
first-order logic on finite domains. It is similar to the usual
languages used for defining assertions in source code. The
specifications are structured as pre/post-condition couples
[15]. This format is easy for users to understand. Further-
more, it is already widely used in industry, for example to
specify conditions in state-transition systems.

We use the specification to abstract the called function.
The idea is to abstract the internal structural paths of the
called function by the definition of the corresponding func-
tional domains.

In the method described in Section 2, the C instructions
are translated into constraints by PathCrawler so that pro-
ducing a new test case becomes a constraint solving prob-
lem. Now, the specification of the called function is also
interpreted as constraints.

We have defined two different coverage criteria. The first
corresponds to the coverage of all feasible paths of the func-
tion under test and all the functional domains for every call-
ing context of the called functions. However, if we only
need to cover all the paths in the calling function, then this
criterion sometimes results in redundant tests. These are the
tests which exercise different functional domains within a
called function but are identical within the calling function.
The second criterion requires just all-paths coverage of the
calling function, with the least possible exploration of the
functional domains of called functions. We have modified
PathCrawler’s method to generate tests respecting either of
these criteria. More details can be found in [23].

In our approach, the maximum number of cases to be
considered depends on the number of pre/post cases in the
specification which is unlikely to be more, and may be far
less, than the number of feasible execution paths. However,
our approach preserves the completeness of the coverage of
paths in the calling functions. It is an example of grey-box
test selection strategy that advantageously combines white-
box (structural) and black-box (functional) strategies inor-
der to achieve automation of unit testing.

3.4 Enabling Definition of Test Contexts

Automated testing tools must offer a means for the user
to define a context for the function under test. Indeed, al-
though defensive programming advocates embedding run-
time precondition verification in the function code, many
functions are programmed without such safety mechanisms,
notably because of performance issues or an unknown spec-
ification. Moreover, time and other resources may be too
scarce for testing numerous out-of-domain behaviours.

Program subroutines often come with formal or informal

5

conditions on the input. These may correspond to the defi-
nition domain, for instance: the C standard library function
sqrt, which takes adouble and returns its square root as
a double, is actually defined only for non-negative num-
bers. But the user may wish to impose additional restric-
tions on the context in which the function is to be tested.

Let us call the conditions on the inputs for which a func-
tion is to be tested thepreconditionof the function. In other
words, the test domain is obtained from the input variables’
types filtered by the precondition, for a functionf with n

inputs of typest1 to tn:

testdom(f) = {X ∈ t1 × · · · × tn|Pre(f,X)} .

However, expressing the precondition is not easy. The
tester needs to actually know the formal precondition. He
must also code the precondition in such a way that the test-
ing tool can use it. For constraint-based testing, the natu-
ral way is to code these conditions into constraints. Even
though bound checking is often trivial to code, harder pre-
conditions, like order or balancing requirements, can be dif-
ficult to code in constraints for an imperative language pro-
grammer.

This is why PathCrawler offers two ways to express the
precondition of the function under test. First, it accepts a
precondition expressed in constraints on the inputs, to be
posted before test case generation. Second, PathCrawler
offers an original method to write the precondition as a C
function. The precondition function takes the same inputs
as the function under test and returns true if and only if the
inputs respect the precondition, that is, belong to the func-
tion domain. Let us give a precondition function for the
functionbsearch of Figure 1. It returns one if the array is
sorted in ascending order, zero otherwise:
int bsearch_precond(int a[4], int key) {

int i;
for (i = 1; i < N; i++)
if (a[i] < a[i-1]) return 0;

return 1; }

To solve the precondition, i.e. to generate only the inputs
for which it returns true, PathCrawler uses symbolic execu-
tion and concrete execution of the precondition function.
The challenge consists in finding valid inputs lazily without
actually exercising the precondition. Despite promising ex-
periments, this remains an active research direction because
it affects the scalability of the overall method.

Similarly, other tools like Java PathFinder [29] and
CUTE [27] allow the user to provide a consistency check
for structure invariants in the tested language. Some tools
also allow the user to describe how to construct a valid in-
put (rather than how to check whether a test-case is valid),
also calledfinitization[6]. In the same logic, the authors of
PEX [28] propose to write basic test scenarios and to gener-
alise them by replacing constants with parameters in order
to obtainparameterised unit tests.

3.5 The Memory Model

The treatment of arrays, pointers, pointer casts, type
unions and primitive C operations on bits is one of the diffi-
cult aspects of automatic test generation for languages such
as C. Unfortunately, these constructions are often found in
industrial software.

PathCrawler only partially treats these constructions at
the present time. This is also the case for comparable tools
CUTE [27] and EXE [7], each tool having its own strong
and weak points.

The treatment of dereferenced pointers, such as in the
branch conditionif(*p == *q), whereint *p,*q;
poses no problem for most tools. However, in order
to treat branch conditions such asif(p == q) (with
int *p,*q;), it must be possible to post constraints on
the values of pointers on input. These values are memory
addresses that can change with each execution; they cannot
be generated as test inputs but must be represented symbol-
ically (such as in CUTE) in order to handle such conditions.

Pointer arithmetic is treated by PathCrawler as long as
there are no explicit or implicit casts of pointers. Some uses
of type unions are equivalent to pointer casts and so can-
not be treated either by PathCrawler. Treating pointer casts
necessitates a low-level model of the memory, including
the size in bits of each variable and their relative positions.
Constraint solving techniques may also have to be adapted
to treat bit-level representations. Although PathCrawler
cannot handle pointer casts, it does have special constraints
to treat operations on bits. EXE has a low-level memory
model and is based on a SAT solver. It can handle bit oper-
ations, pointer arithmetic and also pointer casts, but its use
of bit vectors to model the memory means it can only treat
one level of pointer dereferencing. It therefore cannot treat
**p, which can be treated by PathCrawler in the absence of
pointer casts.

The constructions above pose the additional difficulty
of aliases, i.e. different ways to address the same
memory location. Some of them (external aliases) ap-
pear when the allowed inputs of the function under
test may address the same memory location in two
different ways. For example, in a circular doubly-
linked list dl, some ofdl->left->. . .->left and
dl->right->. . .->right are aliases. If an input is (or
contains) a data structure with aliases, the test generatorhas
to find the shape of the data structure as well as its data val-
ues. By default, PathCrawler supposes there are no external
aliases, but allows the user to define external alias relations
in the precondition.

In functions without external aliases,internal aliasesare
due to instructions inside the function and occur during
symbolic execution of a program path with unknown in-
puts. The difficulty arises fromunknown inputs used as off-
sets,e.g. in instructions likea[i]=5 or if(max<a[i])

6

wherei is (or depends itself on) an unknown input. Sym-
bolic execution of such instructions will not know where
to read or where to write the value ofa[i]. An original
method for treating internal aliases in PathCrawler was pro-
posed in [16]. Its main idea is to delay alias relations oc-
curring in a path until the end of the symbolic execution of
the path. CUTE prefers to approximate alias relations, that
may make test generation incomplete and slower as shown
in [16].

3.6 Treating Floating-Point Numbers

More and more frequently, critical industrial systems use
floating-point numbers. The V3F project [3] studied the is-
sues concerning the automatic generation of tests for pro-
grams manipulating floating-point numbers.

The arithmetic properties of floating-point numbers are
very poor [12]: addition and multiplication are neither asso-
ciative nor distributive. The limited representation usedhas
some annoying effects, in particular absorption and cancel-
lation. Absorption occurs when a small floating-point num-
ber is added to a much bigger one, in this case the addition
acts as a null operation. Cancellation results from the sub-
traction of two neighbouring quantities that may lead to 0.0
even if the quantities were different.

Since the principle of test generation tools is to trans-
form an objective into a constraint system, a naive solution
would be to use a constraint solver on real or rational num-
bers to deal with instructions containing floating-point num-
bers. Due to semantic differences between floating-point
and real arithmetic, this would compromise soundness: a
path may be inferred as infeasible on real numbers although
there exist floating point input data that satisfy it, and con-
versely it may have a real solution while there is no solu-
tion on floating-point numbers. Some attempts have been
made to define heuristic strategies in order to combine con-
straint solving on real numbers and evaluation on floating-
point numbers in [21], but this work has shown that it was
better to develop a specific floating-point solver. This kind
of solver is based on bounds consistency (interval propa-
gation) and tries to implement precisely the floating-point
semantics defined in the IEEE 754 standard, its principles
and the rules that it applies are described in details in [5].
PathCrawler uses such a solver, see Section 3.8.

However, floating-point arithmetic is highly context sen-
sitive. In particular, there are still difficulties concerning
the particularities of some floating-point units, the optimi-
sations made by the compiler and the use of mathematical
libraries. The Intel floating-point units use registers bigger
than those required by the standard (80 bits instead of, for
example, 64 bits for the double type). Every time a com-
putation is performed and the result stored in the registers,
the precision is better than it would be with the standard
type. Every time a piece of data is transferred from a reg-

ister to the memory, a rounding operation is applied. This
means that the semantics of the program instructions de-
pends on the register scheduling decided by the compiler.
The second difficulty comes from the fact that compilers
often make optimisations that are not conservative accord-
ing to the floating-point semantics. The third difficulty is
linked to the fact that only a limited number of operations
are standardised in IEEE 754, and for example the precision
of transcendental functions is not specified, making their
modelling harder. All these points are described in detail in
[22], and they are still open issues in the domain of auto-
matic test case generation.

3.7 Extension to C++

In the interests of structuration and reutilisation, much
industrial software is now written in C++. Instead of C, au-
tomatic test generation tools must thus be able to treat this
language. Many C++ constructs are syntactic sugar and can
be understood as C constructs. Classes can be seen as struc-
tures, and method calls as function calls taking the caller
object as an additional parameter. References, which al-
low direct manipulation of pointers to be avoided, can be
translated into addresses of variables and dereferences of
pointers. In a similar way to compilers, inheritance has to
be flattened out in a simple array, where members of base
classes are put at the beginning and members of the class at
the end. Templates are also syntactic sugar and it is suffi-
cient to consider instantiated templates.

However there are still some problems with C++ which
must be pointed out. In the case where you have an object
as parameter, or if you want to test a method, the internal
state of the object cannot be randomly chosen but has to
respect preconditions. As usual, an object is initialised by
a constructor and modified only by its methods. The se-
mantics of exceptions is complicated because in particular
it requires recording creations of local objects in order to
be able to delete them if an exception occurs. Exceptions
in the context of multiple inheritance are even more tricky.
The semantics of virtual calls requires a ”virtual method ta-
ble” in each object, to be read before each call. It also means
that for a virtual object as a parameter of the function un-
der test, we have to introduce choices in the execution path
which depend on the object type. This type can be seen as
a hidden parameter of the function under test.

The extension of PathCrawler to treat C++ is in progress.
It is based on ELSA [20] instead of CIL [25] to parse C++
and to manipulate the abstract syntax tree. Our modifica-
tion for C++ has the two following restrictions: virtual ob-
jects as a parameter of the function under test and methods
as a function under test are forbidden. These restrictions
can be bypassed by defining a wrapper function which con-
structs a valid object and then calls the desired function or
method. As all objects are instantiated, the types of objects

7

are known, and concrete execution of the instrumented pro-
gram allows to determine which virtual function is called or
which exception handler is triggered.

3.8 Efficiency

An important criterion for the evaluation of an automatic
test generation tool is its performance. There are two main
reasons for the combinatorial explosion of constraint-based
test generation. On the one hand, even with a finite num-
ber of potential solutions, constraint solving problems can
be in general NP-hard, so generating a test case to cover
one test objective may take exponential time. An efficient
constraint solver and appropriate heuristics may provide a
considerable speed-up in many cases. The PathCrawler tool
uses COLIBRI, an efficient constraint solver developed at
CEA LIST and shared with GATeL [18] and OSMOSE [1]
testing tools. This solver is dedicated to program verifica-
tion and is able to solve linear and non-linear constraints on
integer, floating-point and real numbers, with the capacityto
speed up reasoning by exploiting congruence and distance
relations between variables.

On the other hand, rigorous structural testing often has to
cover a very large number of test objectives (cf Section 3.2).
Hence, any optimisation of the generation method, multi-
plied by the number of test objectives, may significantly
improve overall performance. In the PathCrawler method
for the all-paths criterion, various solutions were found to
optimize the test generation process.

Incrementality. Exploring the program paths in a depth-
first search allows maximum reuse of the results of sym-
bolic execution. Each instruction of any given partial pathπ

is executed exactly once, independently of how many paths
start withπ. The longer the program paths are, the more
significant the gain in time due to incremental search. This
is possible thanks to constraint logic programming, which
offers backtracking.

Fast entry. Concrete execution of instrumented code en-
ables a complete feasible path in the program to be quickly
deduced for every test case. Compared to symbolic execu-
tion of a generated test case, concrete execution of binary
code is many times faster and therefore offers a significant
speed-up for the complete test generation session.

3.9 Treating Specific Types of Software

The all-paths structural testing criterion must be care-
fully interpreted in order to apply it to certain types of soft-
ware. We have already seen in Section 3.2 that this is true
even for programs containing loops or function calls. It is
even more so for cyclical reactive or multi-tasking software.

Cyclical reactive software is common in embedded sys-
tems. It typically memorises a “state” using variables de-
clared in C as “static”. Each time such a function is run,

it reads the current value of certain external inputs, repre-
sented by global variables or the function parameters, and
also that of its own state variables and then modifies the
state variables as well as the usual outputs.

To apply path-testing to a single execution of a cycli-
cal reactive function, the state variables must be treated
as inputs, because their value can influence the choice of
branches. However, such systems have a well-defined ini-
tial state (or set of initial states) which then evolves due to
the modifications of the state variables at each execution.
Many states (i.e. combinations of values of state variables)
are not in fact reachable. Path testing must only generate
tests which start from a reachable state, in order to ensure
that bad test results indicate a problem that can really arise.
In theory, the precondition (see Section 3.4) can be used
to characterise the reachable combinations of values of the
state variables but in practice the user does not usually know
the definition of the reachable states.

Another approach is to generate tests which activate a
sequence of executions, starting from an initial state. This
can be done by generating tests for a loop which calls the
function under test a certain number of times and in which
the state variables become local variables. However, in this
approach the size and complexity of the function under test
is greatly increased and it may only be feasible to generate
relatively short sequences.

Path testing also needs to be adapted to multi-threaded
and other parallel programs. The naive solution of exploring
all possible interleavings is not realistic because of the state-
explosion problem. However, we can consider instructions
to be independent if their execution order does not change
the result of the program. This enables us to define equiv-
alence classes of execution paths, which contain the same
independent instructions in different orders. We can then
test just one execution path in each equivalence class. In
[9] the partial order relation between instructions of parallel
programs is investigated. A dynamic method is proposed
to efficiently compute a subset of executions which repre-
sents all equivalence classes. [26] applies this method of
automatic test generation for parallel program to the jCUTE
tool.

4 Conclusion

The test-input generation method implemented in the
PathCrawler tool has proved its effectiveness in the success-
ful generation of test cases covering different paths in nu-
merous examples of C code. However much more is needed
before an effective test generation machine can become a
useful tool. First, it must be able to treat all the features fre-
quently encountered in the sort of code it will be used on.
We have mentioned several of these above, such as floating-
point numbers and library function calls. Moreover, once
the user has decided how and why structural testing fits into

8

the test process, it must be possible to use the tool in this
process. This raises more questions discussed above, such
as the extent to which satisfaction of a coverage criterion is
guaranteed by the tool and how a test context can be defined.
Evidently all tools cannot serve all purposes and other tools
may address the issues we raise in other ways. In this article
we have identified the criteria which seem the most impor-
tant in our experience of applying PathCrawler to examples
of industrial, embedded software. They are the areas we
are currently working on in order to demonstrate that test
automation can really be used in an industrial setting.

Acknowledgements. The authors would like to thank
Bruno Marre, Benjamin Blanc and Franck Vedrine for de-
veloping and maintaining the constraint solver COLIBRI
used by PathCrawler.

References

[1] S. Bardin and P. Herrmann. Structural testing of executa-
bles. InICST’08, pages 22–31, Lillehammer, Norway, April
2008. IEEE Computer Society.

[2] N. E. Beckman, A. V. Nori, S. K. Rajamani, and R. J. Sim-
mons. Proofs from tests. InISSTA’08, pages 3–14, Seattle,
WA, USA, 2008. ACM.

[3] B. Blanc, F. Bouquet, A. Gotlieb, B. Jeannet, T. Jeron,
B. Legeard, B. Marre, C. Michel, and M. Rueher. The V3F
project. InCSTVA’06, Nantes, France, 2006.

[4] P. Boonstoppel, C. Cadar, and D. R. Engler. RWset: attack-
ing path explosion in constraint-based test generation. In
TACAS’08 (Part of ETAPS’08), pages 351–366, Budapest,
Hungary, March–April 2008.

[5] B. Botella, A. Gotlieb, and C. Michel. Symbolic execution
of floating-point computations: Research articles.Softw.
Test. Verif. Reliab., 16(2):97–121, 2006.

[6] C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated
testing based on Java predicates. InISSTA’02, pages 123–
133, New York, NY, USA, 2002. ACM.

[7] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler. EXE: automatically generating inputs of death. In
CCS’06, pages 322–335, Alexandria, VA, USA, November
2006.

[8] H. Collavizza and M. Rueher. Exploration of the capabili-
ties of constraint programming for software verification. In
TACAS’06, pages 182–196, 2006.

[9] C. Flanagan and P. Godefroid. Dynamic partial-order re-
duction for model checking software. InPOPL’05, pages
110–121, New York, NY, USA, 2005. ACM Press.

[10] P. Godefroid. Compositional dynamic test generation.SIG-
PLAN Not., 42(1):47–54, 2007.

[11] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
automated random testing. InPLDI’05, pages 213–223,
Chicago, IL, USA, June 2005.

[12] D. Goldberg. What every computer scientist should know
about floating-point arithmetic.ACM Computing Surveys,
23:5–48, 1991.

[13] A. Gotlieb, B. Botella, and M. Rueher. Automatic test data
generation using constraint solving techniques. InISSTA’98,
pages 53–62, Clearwater Beach, FL, USA, March 1998.

[14] A. Gotlieb, B. Botella, and M. Watel. INKA : Ten years
after the first ideas. InICSSEA’06, Paris, France, December
2006.

[15] C. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):567–580, 1969.

[16] N. Kosmatov. All-paths test generation for programs with
internal aliases. InISSRE’08, pages 147–156, Seattle, WA,
USA, November 2008. IEEE Computer Society.

[17] R. Majumdar and K. Sen. Hybrid concolic testing. In
ICSE’07, pages 416–426, Minneapolis, MN, USA, May
2007. IEEE Computer Society.

[18] B. Marre and A. Arnould. Test sequences generation from
Lustre descriptions : GATeL. InASE’00, pages 229–237,
Grenoble, France, September 2000.

[19] A. P. Mathur. Foundations of Software Testing. Pearson
Editions, 2008.

[20] S. McPeak and G. C. Necula. Elkhound: A fast, practi-
cal GLR parser generator. In E. Duesterwald, editor,CC,
volume 2985 ofLecture Notes in Computer Science, pages
73–88. Springer, 2004.

[21] C. Michel, M. Rueher, and Y. Lebbah. Solving constraints
over floating-point numbers. InCP’01, pages 524–538,
London, UK, 2001. Springer-Verlag.

[22] D. Monniaux. The pitfalls of verifying floating-point com-
putations. ACM Trans. Program. Lang. Syst., 30(3):1–41,
2008.

[23] P. Mouy, B. Marre, N. Willams, and P. Le Gall. Generation
of all-paths unit test with function calls. InICST’08, pages
32–41, Lillehamer, Norway, 2008. IEEE Computer Society.

[24] G. J. Myers. The Art of Software Testing. John Wiley and
Sons, 1979.

[25] G. C. Necula, S. McPeak, S. Rahul, and W. Weimer. CIL:
Intermediate language and tools for analysis and transfor-
mation of C programs. InCC’02, Grenoble, France, 2002.

[26] K. Sen and G. Agha. jCUTE : Automated testing of multi-
threaded programs using race-detection and flipping. Tech-
nical Report UIUCDCS-R-2006-2676, University of Illinois
at Urbana Champaign, 2006.

[27] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit
testing engine for C. InESEC/FSE’05, pages 263–272, Lis-
bon, Portugal, September 2005.

[28] N. Tillmann and J. de Halleux. White box test generation for
.NET. In TAP’08, volume 4966 ofLNCS, pages 133–153.
Springer, April 2008.

[29] W. Visser, C. S. P̌ašareanu, and S. Khurshid. Test input gen-
eration with Java PathFinder.SIGSOFT Softw. Eng. Notes,
29(4):97–107, 2004.

[30] N. Williams. WCET measurement using modified path test-
ing. In WCET’05, Palma de Mallorca, Spain, July 2005.

[31] N. Williams, B. Marre, and P. Mouy. On-the-fly generation
of k-paths tests for C functions : towards the automation of
grey-box testing. InASE’04, pages 290–293, Linz, Austria,
September 2004.

[32] N. Williams, B. Marre, P. Mouy, and M. Roger.
PathCrawler: automatic generation of path tests by combin-
ing static and dynamic analysis. InEDCC’05, pages 281–
292, Budapest, Hungary, April 2005.

9

