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Abstract 

Under certain conditions, the worst-case execution 
time (WCET) of a function can be found by measuring 
the effective execution time for each feasible execution 
path. Automatic generation of test inputs can help 
make this approach more feasible. To reduce the num-
ber of tests, we define two partial orders on the execu-
tion paths of the program under test. Under further 
conditions, these partial orders represent the relation 
between the execution times of the paths. We explain 
how we modified the strategy of the PathCrawler struc-
tural test-case generation tool to generate as few tests 
as possible for paths which are not maximal in these 
partial orders, whilst ensuring that the WCET is exhib-
ited by at least one case in the set. The techniques used 
could also serve in the implementation of other test 
generation strategies which have nothing to do with 
WCET. 

1. Introduction 

It is very important to know the Worst-Case Execu-
tion Time (WCET) of real-time software in order to 
schedule different tasks. However, recent developments 
in processor architectures [1] complicate the task, even 
when it is restricted, as it usually is, to sequential, unin-
terrupted, portions of code. Events such as data-cache 
misses and bad branch prediction use up many more 
cycles than individual instructions but the precise be-
haviour of these  prediction mechanisms is not usually 
divulged by the manufacturer and is subject to contin-
ual innovation. 

We propose an approach based on the measurement 
of the effective execution time on the target processor 
when the code is run on each test-case in a certain set. 
We will not discuss here how to execute the code and 
measure the execution time but these tasks can clearly 
be automated. We define a test set which will guarantee 
that under certain conditions the longest execution time 
of the cases in the set is the WCET of the function un-

der test when it is run uninterrupted. We will not go 
into the details here either of the conditions under 
which our approach is justified and how they can be 
checked or ensured. Our subject in this paper is the 
automatic generation of the defined test set. We explain 
how we modified the test generation strategy of the 
PathCrawler prototype tool to do this.  

2. The basis of our approach: path 
testing  

Structural testing provides the first step in our ap-
proach. The 100%-feasible-path structural test criterion 
guarantees that at least one test case is executed for 
each feasible execution path in the source code of the 
program under test. Let us suppose that execution of 
the same path in the source code, starting from the 
same initial state of the machine, will always give the 
same execution time. Then if we run the function under 
test on a test set satisfying the all-paths criterion, and 
measure the execution time for each test-case, the long-
est execution time measured will be the WCET. 

In fact, as explained in [2], we need to ensure that 
the following conditions are satisfied to be sure that a 
safe WCET is obtained in this way. 
 
1. Each feasible execution path in the source code 

gives rise to at most one feasible execution path in 
the binary code (even if it is not the same path). 

2. The execution time of a feasible execution path in 
the binary code is the same for all input values 
which cause the execution of this path. 

3. For each test case it is possible to set the machine 
to some worst possible initial state concerning 
cache behaviour, branch prediction, etc before 
running the test. 

4. Variations in external system behaviour such as 
bus activity, DRAM refresh, do not influence ex-
ecution time. 
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 f(int x, int y){ 
1 z = x; 
2 if (x < 0) 
3   z = 0; 
4 if (y < 5) 
5   z = 2z; 
6 if (z > 0) 
7   z = z + 1; 
8 else 
9   z = z – 1; 

} 
Figure 1: Example source code and CFG 
In a similar approach described in [3], a path predi-

cate is found for each execution path by a combination 
of dataflow analysis and slicing. The feasibility of the 
path is checked by linear constraint solving. However, 
the WCET of the path is not measured, as in our work, 
but estimated by abstract interpretation of a model of 
the microprocessor. The data cache and branch predic-
tion are not modelled. 

3. Towards fewer execution paths 

Many real-life programs have far too many feasible 
execution paths for the measurement of the execution 
time of each one to be envisaged, even if the process is 
fully automated.  We must then reduce the size of our 
test set whilst ensuring that it still contains at least one 
path exhibiting the WCET. 

The prediction mechanisms of recent microproces-
sors mean that we cannot always assume that the path 
with the most instructions has the longest execution 
time, even if instructions are weighted according to 
their relative execution times. However, we can make 
certain generalisations about the prediction mecha-
nisms which enable us to compare the execution times 
of  certain pairs of paths.  

We have therefore defined two partial orders on 
execution paths based on assumptions about their rela-
tive execution times. This means that in a set of feasible 
execution paths, the path (or paths) ‘with the longest 
execution time must be maximal in one of these partial 
orders. We then only need to measure the execution 
times of paths which are maximal in these partial or-
ders. As our partial orders are based on the control 
structures which contribute to the combinatorial explo-
sion in the number of execution paths, the size of the 
test sets is significantly reduced if they only include 
maximal paths. 

4. Our first partial order 

Our first partial order is based on if-the-else (ITE) 
structures. We illustrate it on the very simple example 
of a C function whose source code and control flow 
graph are shown in Figure 1. 

Let us define an execution path by the sequence 
of conditional branches it takes, after unrolling 
all loops, in-lining all function calls and replac-
ing control-structures such as case, as well as 
multiple conditions, by the equivalent ITE 
branches. We call a path fragment which starts 
at entry to the program but ends before exit from 
the program, a partial path. Given a path P and 
the partial path, PP, which is a prefix of P, the 
suffix of PP in P is obtained by removing PP 
from P. 

The execution paths of our example are shown in Fig-
ure 2. The branches are labelled by the line number at 
their start and end points: the first branch in P1 goes  
from line 2 to line 4 so is labelled 2-4. We note the 
whole path P1 2-4:4-5:6-8. Note that two of the paths 
in Figure 2 are infeasible: they cannot be activated by 
any test-case because their branch conditions are incon-
sistent. 
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Figure 2: Default strategy paths of the example 
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An ITEpath is a path fragment going from the 
beginning of an ITE structure to the end of the 
structure. It may be one branch or a sequence of 
branches containing paths of other, nested, 
ITEs. An ITEpath is defined as empty if it con-
tains no assignments, no function calls, and no 
other ITE structures or loops. It can contain an 
unconditional jump to the instruction after the 
ITE. Note that even non-empty ITEpaths may 
only consist of a single branch. An ITEE is an 
ITE in which one path is empty. 

Our example contains 3 ITE structures of which the 
first  two are ITEEs (empty ITEpaths are shown as ver-
tical in Figures 1 and 2). We now define the following 
strict partial order on execution paths: 

Path Pi is empty-ITE-path-slower-than path Pj, 
noted Pi > Pj, if the only difference between Pi 
and Pj is that one or more ITEpaths are empty in 
Pj but not in Pi. This partial order can be ex-
tended to partial paths. 

Here are the empty-path-slower-than relations in our 
example: 
 P6 > P5 > P3 
 P6 > P1 > P3 
 P2 > P4 

P2 and P6 are maximal. 
We hypothesise that if feasible execution path Pi is 
empty-ITE-path-slower-than feasible execution path Pj 
then the execution time of Pi will be greater than that of 
Pj. 

Let us briefly consider whether this hypothesis is 
justified for two prediction mechanisms which make 
WCET prediction particularly difficult. 

The first is the data cache. Many data cache algo-
rithms exist but they are all based on comparing the 
address of the data referenced in the current instruction 
to that of data referenced in recently executed instruc-
tions. Executing a non-empty path in an ITEE instead 
of the empty path will not only cause more instructions 
to be executed, with a corresponding increase in execu-
tion time, but may also reference new data, increasing 
the chances of a cache miss, and another increase in 
execution time. However, if the non-empty path 
changes the value of a pointer which is later used to 
access data, it is possible that with this new value a data 
cache miss is avoided after the non-empty path, but 
occurs after the empty path. To be sure that we can 
apply the partial order in the presence of a data cache, 
we should check for each execution path whether any 
pointer values are changed in the non-empty path 

through the ITEE and then de-referenced after the 
ITEE. This check can be carried out using PathCrawler. 

The other mechanism is branch prediction. This can 
be based not only on the history of past branches taken, 
but also on a default prediction which is often the 
“true” branch. In C code, most empty ITEpaths will be 
“else” branches (because it is far more natural to code 
an empty “else” in C than an empty “then”), for which 
default branch prediction will fail, imposing a penalty 
on the execution time which could be longer than that 
of the “then” path.  We cannot use this partial order on 
machines which may use this type of branch prediction. 

5. PathCrawler’s default strategy 

To implement the automatic generation of test sets 
which cover the fewest possible paths which are not 
maximal in one of the partial orders above, we modi-
fied the generation strategy of the prototype Path-
Crawler tool. 

We originally developed PathCrawler to automati-
cally generate test inputs to cover 100% of feasible 
execution paths in a C program. It takes as inputs the C 
source code and a specification of the legitimate input 
values, as described in [4], and outputs a set of test 
inputs with the execution path covered by each. 

PathCrawler was one of the first in a growing num-
ber of tools which are based on both symbolic and con-
crete execution of the function under test and on the 
modification, and constraint resolution, of the predicate 
of a previously covered path. However, unlike many 
other concolic tools [5][6], PathCrawler tries to pro-
duce a test set whose coverage of feasible execution 
paths is complete unless constraint resolution times out.  
Further comparison with similar tools can be found in 
[7]. 

Let us start by describing PathCrawler’s default 
test-case generation strategy, before explaining how we 
modified it to take account of the partial orders above. 
The default strategy is illustrated on our example in 
Figure 2. 

By default, PathCrawler generates test-cases by a 
depth-first exploration of the entire binary tree of feasi-
ble execution paths in which the order, left-right or 
right-left, is determined by constraint resolution and so 
is effectively non-deterministic. PathCrawler’s strategy 
is implemented using constraint logic programming [8] 
and it makes extensive use of the backtracking which is 
built-in to this language.  

Given a C function, PathCrawler arbitrarily chooses 
a first legitimate input vector which will activate some  
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Figure 3: Default strategy pseudo-code 

 
feasible execution path, P1. It then behaves as though it 
performed the call cover_all(P1,0,empty_path) of the 
recursive function cover_all(P,i,PP) whose pseudo-
code is shown in Figure 3. 

Notation: In the pseudo code, P and P′ are paths, 
composed of branches B1P, B2P,…,BiP,… and B1P′, 
B2P′,…,BiP′,…,  respectively, where 1, 2, …, i,… are 
branch indices and PP is a partial path. BiP is the 
branch which is the opposite of branch BiP. Predicates 
such as is_last_branch_in_path are written in infix 
form: Bi is_last_branch_in_path P. The concatenation 
of a branch to the end of a path is denoted with a the 
symbol : and actions are connected in a sequence by 
the symbol ;. If one action is performed in the first pass 
through a particular point and then another on back-
tracking, the actions will be labelled 1st pass and on 
backtrack. gen_test(PP) designates an attempt to gen-
erate a test to cover PP. If PP is feasible, gen_test(PP) 
succeeds and its result is the whole path covered but if 
PP is infeasible gen_test(PP) has no result. 

In our example, let us suppose that P1 is the first 
path. Its first branch, B1P1, is 2-4, which is not also its 
last branch so 2-4 becomes the first branch in PP. Simi-
larly, 4-5 becomes the second branch in PP. B3P1 is 6-8 
and is the last path in P1 so B3P1, which is 6-7, is added 
to PP, which becomes  2-4:4-5:6-7. 

The test-case generated for PP activates path P2 in 
which (because P2 is identical to PP), B3P2 is the last 
branch so the default strategy backtracks over the pre-
vious treatment of branch 4-5 in P1, replacing it in PP 
by its opposite so that PP becomes 2-4:4-6. Let us sup-
pose that the test-case generated for this PP activates 
path P3. Branch B3P3 is 6-7. This is the last branch in 

P3 so its opposite, 6-8, is added to the new partial path 
so that PP becomes 2-4:4-6:6-7. However, this partial 
path is infeasible so Pathcrawler backtracks over the 
previous treatment of branch 2-4 in P1, replacing it by 
its opposite as first branch in PP, which becomes 2-3. 
The test-case now generated for PP activates path P5, 
and so on. 

Indeed, when PathCrawler succeeds in generating a 
test case for a value of PP formed by replacing a 
branch in path P by its opposite, the path, P′, covered 
by the new case may be exactly the same as PP, leading 
from the replaced branch straight to exit from the func-
tion under test (as in the case of P2 in our example, 
which is exactly the partial path formed by replacing 
the last branch in P1) or may be composed of other 
branches before exit from the function (as in the case of 
P3). Indeed, PP may be common to several paths (as in 
the case of the partial path formed by replacing B2P2, 
this partial path is common to P3 and P4). PathCrawler 
generates an input vector which may activate any one 
of these continuations after the replaced branch. The 
path activated depends on the constraint resolution 
strategy used by PathCrawler to generate the input vec-
tor so is effectively non-deterministic. 

In conclusion, depth-first exploration ensures that 
when PathCrawler forms a feasible partial path PP by 
replacing a branch BiP in P by its opposite, BiP, it cov-
ers the whole sub-tree of feasible execution paths 
rooted in PP before backtracking over the treatment of 
B(i-1)P. This is the property that will now be used to 
modify the test generation strategy. 

6. Strategy to minimise empty ITEpaths 

6.1 Introduction 

We modified PathCrawler’s default strategy so as to 
generate tests for a subset of the feasible execution 
paths containing all paths which are maximal in our 
first partial order and the fewest possible non-maximal 
paths. The default strategy is modified in three ways: 

1. to memorise feasible paths and infeasible par-
tial paths ; 

2. to explore all non-empty paths of ITEEs  be-
fore any empty paths ; 

3. for any partial path ending in an empty ITE-
path, to only try to generate tests to cover 
maximal paths by comparing this partial path to 
the feasible paths and infeasible partial paths 
which have already been found. 

cover_all(P,i,PP) = 
if  BiP is_last_branch_in P 
then cover_subtree(PP:BiP,i) 
else 
 1st pass : cover_all(P,i+1,PP:BiP) 

       on backtrack : cover_subtree(PP:BiP,i) 
 
cover_subtree(PP,i) = 
     if gen_test(PP) = P′ 

     then if  BiP′ is_last_branch_in P′ 
              then backtrack 

     else cover_all(P′,i+1,PP) 
     else backtrack 
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6.2 Illustration on the example 

We first illustrate the modified strategy on our ex-
ample, before presenting the new algorithm. The paths 
explored by the modified strategy are shown in Figure 
4. We suppose that the first path generated is still P1. 
The modified strategy first memorises P1, and then 
starts to treat it. Its first branch, 2-4, is an empty ITE-
path and, instead of adding this branch to PP in the 
same way as the default strategy, the modified strategy 
forces exploration of a non-empty ITEpath first by add-
ing the opposite, branch 2-3, to PP and then trying to 
generate a test-case to cover this partial path 2-3. Let us 
suppose that the new test-case covers path P6 (and not 
P5, which also has 2-3 as a prefix). The modified strat-
egy memorises this feasible path and proceeds to treat 
the branch after 2-3, branch 4-5. This is a non-empty 
ITEpath and the modified strategy adds this to the new 
partial path, in the same way as the default strategy. 
The next branch, 6-8, is not a branch of an ITEE so the 
modified strategy treats it in the same way as the de-
fault strategy, creating the infeasible partial path 2-3:4-
5:6-7. The modified strategy memorises this infeasible 
partial path and then backtracks over the treatment of 
branch 4-5 in P6, adding its opposite, 4-6, to the new 
partial path as for the default strategy to obtain partial 
path 2-3:4-6. However, branch 4-6 is an empty ITEpath 
so instead of just trying to generate a test case for the 
new partial path, the modified strategy compares it to 
the memorised infeasible partial paths (just 2-3:4-5:6-7 
in this case) and feasible paths (P1 and P6). Indeed, if a 
test were generated to cover the new partial path 2-3:4-
6, it would cover path P5, and the already-generated P6 
is empty-ITE-path-slower-than P5. However the only 
partial path starting with 2-3 and taking branch 6-7 
tried so far was the infeasible partial path 2-3:4-5:6-7 
and so a feasible path starting with 2-3:4-6:6-7 could be 
maximal. The modified strategy therefore adds the suf-
fix 6-7 to the partial path 2-3:4-6 and tries to generate a 
test for the resulting partial path 2-3:4-6:6-7. This is 
infeasible but it doesn’t need to be memorised because 
2-3:4-5:6-7 is already memorised. There are no more 
continuations of 2-3:4-6 leading to maximal paths so 
the modified strategy now backtracks over the treat-
ment of branch 2-4 in P1. This empty ITEpath was 
replaced by its opposite in P6, so on backtracking it is 
the original branch 2-4 which becomes the first and 
only branch of the new partial path. Once again, the 
new partial path ends in an empty ITEpath so the modi-
fied strategy compares it to the memorised infeasible 
partial path and feasible paths and deduces that a feasi-
ble path starting with 

4-5

6-8

P1

2-4

P6

2-3

infeasible infeasible

P2

6-7

 
 Figure 4: Paths for the modified strategy  

 
2-4:4-5:6-7 would be maximal. It therefore adds the 
suffix 4-5:6-7 to the partial path 2-4 and tries to gener-
ate a test for the resulting partial path 2-4:4-5:6-7. This 
is P2, so a test is generated which covers exactly the 
partial path, which is memorised as feasible. Now there 
are no new branches to be explored, no more suffixes 
of 2-4 which could be maximal paths and no treatments 
of branches to backtrack over so test-case generation 
stops. 

6.3 Properties 

Like the default strategy, the modified strategy car-
ries out a depth-first exploration of the tree of all feasi-
ble execution paths but it forces the left/right choice (to 
explore the non-empty ITEpaths first) in the case of 
empty ITEpaths. Depth-first exploration ensures that 
when the strategy backtracks over the treatment of the 
first branch in a non-empty path of an ITEE, all feasi-
ble and infeasible suffixes of the ITE are known, be-
cause the feasible part of the sub-tree rooted in the exit 
from the non-empty ITEpath has been fully explored. 
This is the basis for our first claim, which is that our 
modified strategy 
1. generates tests for all maximal paths 

Note that in this example only 3 test-cases were 
generated, successfully covering the 2 maximal paths, 
and both infeasible partial paths were explored. 

Obviously, the performance of the modified strat-
egy compared to the default strategy depends on the 
element of non-determinism. However, we also claim 
that our modified strategy 
2. reduces (or, at worst, does not increase) unneces-

sary exploration of the tree of  execution paths and 
3. reduces (or, at worst, does not increase) genera-

tion of tests for paths which are not maximal. 

5



6.4 Techniques 

The implementation of the modified strategy is 
based on two techniques: 

The first is the storage of infeasible partial paths in 
the form of “abstract partial paths”. These are (partial) 
paths which abstract the precise path taken in each 
ITEE, as explained below. They identify, as the same 
abstract path, the paths which only differ in their tra-
versal of the ITEEs. The modified strategy uses them to 
recognise and manage ITEEs, ensuring that partial 
paths are explored in the right order.  

The second technique is the concatenation, to cer-
tain non-maximal partial paths, of the suffixes from 
“compatible” partial paths previously found to be in-
feasible. The “compatible” partial paths are those with 
the same abstract prefix as the current partial path. This 
concatenation replaces complete depth-first exploration 
of the sub-tree of execution paths rooted at the current 
partial path. 

6.5 The detailed algorithm 

We now present the detailed algorithm of the modi-
fied strategy in order to demonstrate that it has the 
three properties mentioned above. 

We first define the abstract partial paths used in the 
modified strategy: 

An abstract path is a (concrete) path in which 
path fragments corresponding to a complete 
path in an ITEE are replaced by an abstract 
ITEE containing both the empty ITEpath and an 
abstract non-empty ITEpath. This means that for 
each abstract ITEE in an abstract path there are 
two concrete instantiations, one containing the 
empty ITEpath and one containing the non-
empty ITEpath. Note that in each abstract path, 
each ITEE structure will be represented by one 
abstract ITEE for each feasible non-empty ITE-
path. The definition of abstract paths is extended 
to abstract partial paths. 

Extra notation: the modified strategy needs a set of 
infeasible abstract partial paths, denoted infeas and 
initialised to the empty set, and also a set of feasible 
paths, denoted feas and also initialised to the empty set. 
Assignment is written :=, set union is denoted by U and 
set membership is written є. We use the symbol · 
instead of : for concatenation of a branch to the end of 
an abstract partial path as a reminder that abstract paths 
contain abstract ITEEs. The addition of a branch which 
is the end of a non-empty ITEpath causes the whole 
non-empty ITEpath to be replaced in the abstract par-
tial path by an abstract ITEE. Iteration is written 

foreach, the operation foreach_in_order iterates over 
paths ordered according to the partial order: for each 
successive ITEE, paths taking a non-empty ITEpath, 
themselves ordered according to the remaining ITEEs 
they contain, are treated before the others. 

The modified strategy corresponds to the call 
cover_max(P1,1,empty_path,empty_path) of the recur-
sive function cover_max(P,i,PP,APP) whose pseudo-
code is presented in Figure 5. 

As shown by the pseudo-code, if the current branch 
is the last in the path and not the first (and only) branch 
in a non-empty path of an ITEE then the default strat-
egy is just extended to memorise feasible paths and 
abstract infeasible partial paths (by calling 
cover_max_subtree instead of cover_subtree). How-
ever, if the current branch is the last in the path and 
also the first (and only) branch in a non-empty path of 
an ITEE then there is no need to generate a test-case 
for the path taking the alternative, empty, branch so the 
default strategy backtracks immediately over the treat-
ment of the previous branch. 

If the current branch is not the last branch in the 
path nor an empty ITEpath nor the first branch in a 
non-empty path of an ITEE then the default strategy is 
just modified as above to call cover_max_subtree. 

However, if it is the first branch in a non-empty 
path of an ITEE, then when exploring its opposite (i.e. 
the empty ITEpath) on backtrack, the modified strategy 
calls cover_rest_subtree instead of cover_max_subtree. 
Indeed, if two partial paths, PP1 and PP2, are identical 
up to an ITEE, but PP1 takes a non-empty path through 
the ITEE and PP2 an empty path, then potentially, ig-
noring feasibility, PP1 and PP2 have identical sub-
trees of path suffixes after the ITEE. Each of these suf-
fixes will form a path, P1, when concatenated to PP1 
which is empty-path-slower-than the path, P2, which is 
formed when the same suffix is concatenated to PP2. 
However, some of these suffixes may be infeasible if 
they are concatenated to PP1 but not if they are con-
catenated to PP2. There is no need to cover the path 
formed by concatenating to PP2 a suffix which, when 
concatenated to PP1 formed a feasible path. This is 
why cover_rest_subtree looks for infeasible partial 
paths which have a prefix with the same abstract repre-
sentation (i.e. are identical except for ITEEs) as the 
current partial path. These are partial paths which were 
infeasible with a non-empty ITEpath but may be feasi-
ble with an empty ITEpath. The situation is more com-
plicated if the current partial path contains several 
ITEES because a partial path with, for example, one 
empty ITEpath followed by one non-empty ITEpath is 
not comparable, in our partial order, with the partial 
path which is identical except that it  
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cover_max(P,i,PP,APP) = 
if  BiP is_last_branch_in P 
then { 
     if BiP starts_non_empty_ITEE_path 
     then backtrack 
     else 
        cover_max_subtree(PP:BiP,APP·BiP,i) } 
else if BiP starts_non_empty_ITEE_path 

  then { 
     1st pass : 
          cover_max(P,i+1,PP:BiP,APP·BiP) 

           on backtrack : 
                cover_rest_subtree(PP:BiP,APP·BiP,i) } 
         else if BiP is_empty_ITEE_path 
                 then { 
                   if gen_test(PP:BiP) = P′ 

             then {  
                      1st pass : 

                   feas := feas U P′ ; 
                   if  BiP′ is_last_branch_in P′ 
                   then backtrack 

          else cover_max(P′,i+1,PP:BiP,APP·BiP) 
                 on backtrack : 
                    cover_rest_subtree(PP:BiP,APP·BiP,i)} 
               else infeas := infeas U APP·BiP ; 
                       cover_max(P,i+1,PP:BiP,APP·BiP) }   
           else { 
              1st pass : 
                   cover_max(P,i+1,PP:BiP,APP·BiP) 

                    on backtrack : 
                         cover_max_subtree(PP:BiP,APP·BiP,i)} 

 
cover_max_subtree(PP,APP,i) = 
     if gen_test(PP) = P′ 

     then feas := feas U P′ ; 
             if  BiP′ is_last_branch_in P′ 
             then backtrack 

    else cover_max(P′,i+1,PP,APP) 
     else infeas := infeas U APP ; 

                  backtrack 
 
cover_rest_subtree(PP,APP,i)= 
foreach APPext є infeas { 
   foreach_in_order PPext concretises APPext { 
       if PP is_a_prefix_of PPext 
       then { 
           if not slower_feas_paths(Pext,APPext) 
           then { 
              if gen_test(PPext) = P′ 

        then { 
            feas := feas U P′ ; 
            if  BiP′ is_last_branch_in P′ 
            then backtrack 

    else cover_max(P′,i+1,PP,APP) } 
              else backtrack }  } } } 
  
slower_feas_paths(Pext,APPext) if 
   exists Pext′, PPext′ such_that ( 
       Pext′ є feas 
       and PPext′ is_a_prefix_of Pext′ 
       and PPext′ concretises APPext 
       and Pext′ empty_ITE_path_slower_than Pext ) 

 
 

 
 

Figure 5: Pseudo-code of the modified strategy  
 
 
contains a non-empty path through the first ITEE and 
an empty path through the second. This is why the 
slower_feas_paths predicate is necessary. 

If the current branch is not the last branch in the 
path but is an empty ITEpath, then the modified strat-
egy overrides the left-right non-determinism of the de-
fault strategy to force exploration of the non-empty 
ITEpaths first (unless they are all infeasible) and the 
empty ITEpath itself on backtrack. This ensures that 
when suffixes of the empty ITEpath are explored by 
cover_rest_subtree, all infeasible suffixes of the non-
empty ITEpaths have been found. 

Note that we have made several optimisations to  
the algorithm as defined above but to improve clarity 
these are not described. 

7. Our second partial order 

Our second partial order is based on loops. If a loop 
has a number of iterations which varies with the value 
of the inputs, then two paths which are identical except 
for the number of iterations of this loop may not have 
the same execution time and must be treated as two 
separate paths. However, under certain conditions we 
can consider that of these two paths, the one which 
makes the most iterations of the same loop will have 
the longest execution time. We can suppose that this is 
the case if the following conditions are satisfied: 
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1) the same branches (if any) are taken in each 
loop iteration ; 

2) the data accessed in successive loop iterations 
have addresses which are close enough to en-
sure that executing a particular iteration will 
not avoid a future data-cache-miss ; 

3) as for our first partial order, we must check 
the effect of the successive loop iterations on 
pointer values which are de-referenced after 
loop exit. 

Indeed, branch prediction mechanisms should not pre-
sent any problems in this case; they should always suc-
ceed in each iteration until the last, when they will al-
ways fail. As for data cache behaviour, if the same 
branches are taken in each iteration then the same data 
will be referenced, unless it is referenced using pointers 
whose value changes from iteration to iteration, hence 
the second condition.  

It so happens that many real-life programs present 
in real-time systems do contain loops respecting the 
conditions above. In particular, programs written with 
the aid of mathematical modelling software often con-
tain loops which traverse arrays in order to obtain a 
linearised approximation (or interpolation) of the con-
tinuous graph of a mathematical function. These loops 
typically search for the two x-coordinates of the dis-
crete graph which surround a given input value and 
then return the corresponding y-coordinate of the lin-
earised approximation. If the graph has another dimen-
sion, then it will be treated in a similar way. Typically, 
the search is not optimised but just consists of inspect-
ing one by one the array elements which represent the 
x-coordinate values until the appropriate one is found 
and then exiting the loop after a variable number of 
identical iterations. 

Let us define a second partial order on execution 
paths: 

Path Pi is identical-iteration-slower-than path 
Pj if  
� Pi and Pj are identical except for the num-

ber of iterations of certain loops and 
� each of these loops has at least one iteration 

and 
� in each of these loops, all iterations are 

identical and 
� for each of these loops, Pi has more itera-

tions than Pj. 
 
 

The partial order is restricted to loops with at least 
one iteration because zero iterations of the loop may 
result in different data cache behaviour than at least one 
iteration of the loop because of the data references in 
the body of the loop. Note that nested loops are not 
considered and nor are loops with a mixture of an un-
broken sequence of identical iterations and some other, 
non-identical, iterations too. 

To generate tests to cover paths that are maximal in 
this partial order, we have further modified PathCraw-
ler’s generation strategy in a similar way to that de-
scribed for the first partial order. This modification is 
not described in detail here because it is more compli-
cated than for the first partial order, but it is based on  
the same two basic techniques described in 6.4. 

For this partial order, the modified strategy forces 
exploration of an additional loop iteration first, in a 
similar way to the exploration of non-empty ITEpaths. 
When an additional loop iteration is infeasible, we have 
reached the maximum number of iterations for the 
given path so far. This must be memorised so that on 
backtrack it can be compared to the current number of 
loop iterations in similar paths. Indeed, loop exit is 
only explored on backtrack and if it is exit from the 
maximal number of iterations. In that case, the whole 
sub-tree of feasible execution paths is explored. Other-
wise, the infeasible partial paths and feasible paths 
found so far are studied to decide which suffixes to try 
and cover, just as for our first partial order. The num-
ber of iterations of each loop with identical iterations is 
abstracted in the abstract path and for each such loop in 
the abstract path suffix, concrete loops are tried in des-
cending order of the number of iterations. 

The first difficulty is in the analysis of the loop. 
Identifying identical iterations is relatively straightfor-
ward. However, the loop head may have a complex 
condition made up of multiple sub-conditions com-
bined in conjunctions and disjunctions. The loop may 
also contain break instructions with equally compli-
cated conditions. In this case, we have to identify the 
sub-conditions that immediately precede the start of a 
new loop iteration and those that immediately precede 
exit from the loop. We also have to identify the sub-
conditions whose negation immediately precedes the 
start of a new loop iteration or loop exit and those 
whose negation can lead to either. Note that if a path 
contains a loop with just one iteration, then it is not 
possible to know until backtrack whether it will need to 
be compared to other paths in which there are more, 
identical, iterations. 
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8. Perspectives 

We tried our default and modified strategies on an 
example of industrial real-time software comprising 
1512 lines of commented C source code and 89 condi-
tional instructions but no loops. The default strategy 
took several days to generate 846975 test-cases and our 
modified strategy took about one day to generate 6554 
test-cases. Geensys, our partners in the MaSCotTE 
project, designed and implemented a test bench and ran 
the two test sets on a HCS12X simulator to measure the 
effective execution time of each test-case. The path 
with the longest execution time in the first set was in-
deed covered by a test-case in the second set.   

In fact, the modified strategy generated all the test-
cases in a few hours and the rest of the time was spent 
trying in vain to find solutions for continuations of par-
tial paths ending in empty ITEpaths. We are currently 
studying how to reduce the number of continuations 
explored by taking into account the dependencies be-
tween the code in the ITE body or loop iteration and 
the final branch condition in the infeasible partial path.  

The techniques used to generate paths which are 
maximal in our partial orders could certainly be devel-
oped further and more widely used to implement other 
structural testing strategies which have nothing to do 
with WCET, but where certain paths, or path frag-
ments, do not need to be covered. Abstracting the path 
fragment which traverses a control structure (ITE, loop 
or function call) helps to avoid unnecessary exploration 
of this part of the program under test. For example, a 
path-coverage test criterion may not impose coverage 
of all paths which only differ in the number of identical 
iterations of a certain loop or in the path taken through 
a called function. The memorisation of infeasible par-
tial paths ensures that at least one instance of each fea-
sible path containing the loop or function call is tested. 
Indeed, we already used the memorisation of infeasible 
partial paths to treat function calls in [7] but in that 
approach the traversal of the function was “abstracted” 
by its specification. In an alternative approach to the 
treatment of function calls, [9] store not infeasible par-
tial paths but the result of symbolic execution of al-
ready-explored paths. In [10], memorisation of execu-
tion paths and simple dependency analysis is used to 
eliminate path fragments which have already been 
tested. 
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