
© 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for

all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.

Test Generation Strategies to Measure Worst-Case Execution Time

Nicky Williams, Muriel Roger

CEA LIST, Software Reliability Laboratory, 91191Gif sur Yvette, FRANCE
nicky.williams@cea.fr, muriel.roger@cea.fr

Abstract

Under certain conditions, the worst-case execution
time (WCET) of a function can be found by measuring
the effective execution time for each feasible execution
path. Automatic generation of test inputs can help
make this approach more feasible. To reduce the num-
ber of tests, we define two partial orders on the execu-
tion paths of the program under test. Under further
conditions, these partial orders represent the relation
between the execution times of the paths. We explain
how we modified the strategy of the PathCrawler struc-
tural test-case generation tool to generate as few tests
as possible for paths which are not maximal in these
partial orders, whilst ensuring that the WCET is exhib-
ited by at least one case in the set. The techniques used
could also serve in the implementation of other test
generation strategies which have nothing to do with
WCET.

1. Introduction

It is very important to know the Worst-Case Execu-
tion Time (WCET) of real-time software in order to
schedule different tasks. However, recent developments
in processor architectures [1] complicate the task, even
when it is restricted, as it usually is, to sequential, unin-
terrupted, portions of code. Events such as data-cache
misses and bad branch prediction use up many more
cycles than individual instructions but the precise be-
haviour of these prediction mechanisms is not usually
divulged by the manufacturer and is subject to contin-
ual innovation.

We propose an approach based on the measurement
of the effective execution time on the target processor
when the code is run on each test-case in a certain set.
We will not discuss here how to execute the code and
measure the execution time but these tasks can clearly
be automated. We define a test set which will guarantee
that under certain conditions the longest execution time
of the cases in the set is the WCET of the function un-

der test when it is run uninterrupted. We will not go
into the details here either of the conditions under
which our approach is justified and how they can be
checked or ensured. Our subject in this paper is the
automatic generation of the defined test set. We explain
how we modified the test generation strategy of the
PathCrawler prototype tool to do this.

2. The basis of our approach: path
testing

Structural testing provides the first step in our ap-
proach. The 100%-feasible-path structural test criterion
guarantees that at least one test case is executed for
each feasible execution path in the source code of the
program under test. Let us suppose that execution of
the same path in the source code, starting from the
same initial state of the machine, will always give the
same execution time. Then if we run the function under
test on a test set satisfying the all-paths criterion, and
measure the execution time for each test-case, the long-
est execution time measured will be the WCET.

In fact, as explained in [2], we need to ensure that
the following conditions are satisfied to be sure that a
safe WCET is obtained in this way.

1. Each feasible execution path in the source code

gives rise to at most one feasible execution path in
the binary code (even if it is not the same path).

2. The execution time of a feasible execution path in
the binary code is the same for all input values
which cause the execution of this path.

3. For each test case it is possible to set the machine
to some worst possible initial state concerning
cache behaviour, branch prediction, etc before
running the test.

4. Variations in external system behaviour such as
bus activity, DRAM refresh, do not influence ex-
ecution time.

PREPRESS PROOF FILE CAUSAL PRODUCTIONS1

 f(int x, int y){
1 z = x;
2 if (x < 0)
3 z = 0;
4 if (y < 5)
5 z = 2z;
6 if (z > 0)
7 z = z + 1;
8 else
9 z = z – 1;

}
Figure 1: Example source code and CFG
In a similar approach described in [3], a path predi-

cate is found for each execution path by a combination
of dataflow analysis and slicing. The feasibility of the
path is checked by linear constraint solving. However,
the WCET of the path is not measured, as in our work,
but estimated by abstract interpretation of a model of
the microprocessor. The data cache and branch predic-
tion are not modelled.

3. Towards fewer execution paths

Many real-life programs have far too many feasible
execution paths for the measurement of the execution
time of each one to be envisaged, even if the process is
fully automated. We must then reduce the size of our
test set whilst ensuring that it still contains at least one
path exhibiting the WCET.

The prediction mechanisms of recent microproces-
sors mean that we cannot always assume that the path
with the most instructions has the longest execution
time, even if instructions are weighted according to
their relative execution times. However, we can make
certain generalisations about the prediction mecha-
nisms which enable us to compare the execution times
of certain pairs of paths.

We have therefore defined two partial orders on
execution paths based on assumptions about their rela-
tive execution times. This means that in a set of feasible
execution paths, the path (or paths) ‘with the longest
execution time must be maximal in one of these partial
orders. We then only need to measure the execution
times of paths which are maximal in these partial or-
ders. As our partial orders are based on the control
structures which contribute to the combinatorial explo-
sion in the number of execution paths, the size of the
test sets is significantly reduced if they only include
maximal paths.

4. Our first partial order

Our first partial order is based on if-the-else (ITE)
structures. We illustrate it on the very simple example
of a C function whose source code and control flow
graph are shown in Figure 1.

Let us define an execution path by the sequence
of conditional branches it takes, after unrolling
all loops, in-lining all function calls and replac-
ing control-structures such as case, as well as
multiple conditions, by the equivalent ITE
branches. We call a path fragment which starts
at entry to the program but ends before exit from
the program, a partial path. Given a path P and
the partial path, PP, which is a prefix of P, the
suffix of PP in P is obtained by removing PP
from P.

The execution paths of our example are shown in Fig-
ure 2. The branches are labelled by the line number at
their start and end points: the first branch in P1 goes
from line 2 to line 4 so is labelled 2-4. We note the
whole path P1 2-4:4-5:6-8. Note that two of the paths
in Figure 2 are infeasible: they cannot be activated by
any test-case because their branch conditions are incon-
sistent.

P2

6-7

4-6

P3 P4

4-5

6-8

P1

2-4

P5

2-3

infeasible

P6

infeasible

Figure 2: Default strategy paths of the example

4-54-6

2-3

6-76-8

2-4

2

An ITEpath is a path fragment going from the
beginning of an ITE structure to the end of the
structure. It may be one branch or a sequence of
branches containing paths of other, nested,
ITEs. An ITEpath is defined as empty if it con-
tains no assignments, no function calls, and no
other ITE structures or loops. It can contain an
unconditional jump to the instruction after the
ITE. Note that even non-empty ITEpaths may
only consist of a single branch. An ITEE is an
ITE in which one path is empty.

Our example contains 3 ITE structures of which the
first two are ITEEs (empty ITEpaths are shown as ver-
tical in Figures 1 and 2). We now define the following
strict partial order on execution paths:

Path Pi is empty-ITE-path-slower-than path Pj,
noted Pi > Pj, if the only difference between Pi
and Pj is that one or more ITEpaths are empty in
Pj but not in Pi. This partial order can be ex-
tended to partial paths.

Here are the empty-path-slower-than relations in our
example:
 P6 > P5 > P3
 P6 > P1 > P3
 P2 > P4

P2 and P6 are maximal.
We hypothesise that if feasible execution path Pi is
empty-ITE-path-slower-than feasible execution path Pj
then the execution time of Pi will be greater than that of
Pj.

Let us briefly consider whether this hypothesis is
justified for two prediction mechanisms which make
WCET prediction particularly difficult.

The first is the data cache. Many data cache algo-
rithms exist but they are all based on comparing the
address of the data referenced in the current instruction
to that of data referenced in recently executed instruc-
tions. Executing a non-empty path in an ITEE instead
of the empty path will not only cause more instructions
to be executed, with a corresponding increase in execu-
tion time, but may also reference new data, increasing
the chances of a cache miss, and another increase in
execution time. However, if the non-empty path
changes the value of a pointer which is later used to
access data, it is possible that with this new value a data
cache miss is avoided after the non-empty path, but
occurs after the empty path. To be sure that we can
apply the partial order in the presence of a data cache,
we should check for each execution path whether any
pointer values are changed in the non-empty path

through the ITEE and then de-referenced after the
ITEE. This check can be carried out using PathCrawler.

The other mechanism is branch prediction. This can
be based not only on the history of past branches taken,
but also on a default prediction which is often the
“true” branch. In C code, most empty ITEpaths will be
“else” branches (because it is far more natural to code
an empty “else” in C than an empty “then”), for which
default branch prediction will fail, imposing a penalty
on the execution time which could be longer than that
of the “then” path. We cannot use this partial order on
machines which may use this type of branch prediction.

5. PathCrawler’s default strategy

To implement the automatic generation of test sets
which cover the fewest possible paths which are not
maximal in one of the partial orders above, we modi-
fied the generation strategy of the prototype Path-
Crawler tool.

We originally developed PathCrawler to automati-
cally generate test inputs to cover 100% of feasible
execution paths in a C program. It takes as inputs the C
source code and a specification of the legitimate input
values, as described in [4], and outputs a set of test
inputs with the execution path covered by each.

PathCrawler was one of the first in a growing num-
ber of tools which are based on both symbolic and con-
crete execution of the function under test and on the
modification, and constraint resolution, of the predicate
of a previously covered path. However, unlike many
other concolic tools [5][6], PathCrawler tries to pro-
duce a test set whose coverage of feasible execution
paths is complete unless constraint resolution times out.
Further comparison with similar tools can be found in
[7].

Let us start by describing PathCrawler’s default
test-case generation strategy, before explaining how we
modified it to take account of the partial orders above.
The default strategy is illustrated on our example in
Figure 2.

By default, PathCrawler generates test-cases by a
depth-first exploration of the entire binary tree of feasi-
ble execution paths in which the order, left-right or
right-left, is determined by constraint resolution and so
is effectively non-deterministic. PathCrawler’s strategy
is implemented using constraint logic programming [8]
and it makes extensive use of the backtracking which is
built-in to this language.

Given a C function, PathCrawler arbitrarily chooses
a first legitimate input vector which will activate some

3

Figure 3: Default strategy pseudo-code

feasible execution path, P1. It then behaves as though it
performed the call cover_all(P1,0,empty_path) of the
recursive function cover_all(P,i,PP) whose pseudo-
code is shown in Figure 3.

Notation: In the pseudo code, P and P′ are paths,
composed of branches B1P, B2P,…,BiP,… and B1P′,
B2P′,…,BiP′,…, respectively, where 1, 2, …, i,… are
branch indices and PP is a partial path. BiP is the
branch which is the opposite of branch BiP. Predicates
such as is_last_branch_in_path are written in infix
form: Bi is_last_branch_in_path P. The concatenation
of a branch to the end of a path is denoted with a the
symbol : and actions are connected in a sequence by
the symbol ;. If one action is performed in the first pass
through a particular point and then another on back-
tracking, the actions will be labelled 1st pass and on
backtrack. gen_test(PP) designates an attempt to gen-
erate a test to cover PP. If PP is feasible, gen_test(PP)
succeeds and its result is the whole path covered but if
PP is infeasible gen_test(PP) has no result.

In our example, let us suppose that P1 is the first
path. Its first branch, B1P1, is 2-4, which is not also its
last branch so 2-4 becomes the first branch in PP. Simi-
larly, 4-5 becomes the second branch in PP. B3P1 is 6-8
and is the last path in P1 so B3P1, which is 6-7, is added
to PP, which becomes 2-4:4-5:6-7.

The test-case generated for PP activates path P2 in
which (because P2 is identical to PP), B3P2 is the last
branch so the default strategy backtracks over the pre-
vious treatment of branch 4-5 in P1, replacing it in PP
by its opposite so that PP becomes 2-4:4-6. Let us sup-
pose that the test-case generated for this PP activates
path P3. Branch B3P3 is 6-7. This is the last branch in

P3 so its opposite, 6-8, is added to the new partial path
so that PP becomes 2-4:4-6:6-7. However, this partial
path is infeasible so Pathcrawler backtracks over the
previous treatment of branch 2-4 in P1, replacing it by
its opposite as first branch in PP, which becomes 2-3.
The test-case now generated for PP activates path P5,
and so on.

Indeed, when PathCrawler succeeds in generating a
test case for a value of PP formed by replacing a
branch in path P by its opposite, the path, P′, covered
by the new case may be exactly the same as PP, leading
from the replaced branch straight to exit from the func-
tion under test (as in the case of P2 in our example,
which is exactly the partial path formed by replacing
the last branch in P1) or may be composed of other
branches before exit from the function (as in the case of
P3). Indeed, PP may be common to several paths (as in
the case of the partial path formed by replacing B2P2,
this partial path is common to P3 and P4). PathCrawler
generates an input vector which may activate any one
of these continuations after the replaced branch. The
path activated depends on the constraint resolution
strategy used by PathCrawler to generate the input vec-
tor so is effectively non-deterministic.

In conclusion, depth-first exploration ensures that
when PathCrawler forms a feasible partial path PP by
replacing a branch BiP in P by its opposite, BiP, it cov-
ers the whole sub-tree of feasible execution paths
rooted in PP before backtracking over the treatment of
B(i-1)P. This is the property that will now be used to
modify the test generation strategy.

6. Strategy to minimise empty ITEpaths

6.1 Introduction

We modified PathCrawler’s default strategy so as to
generate tests for a subset of the feasible execution
paths containing all paths which are maximal in our
first partial order and the fewest possible non-maximal
paths. The default strategy is modified in three ways:

1. to memorise feasible paths and infeasible par-
tial paths ;

2. to explore all non-empty paths of ITEEs be-
fore any empty paths ;

3. for any partial path ending in an empty ITE-
path, to only try to generate tests to cover
maximal paths by comparing this partial path to
the feasible paths and infeasible partial paths
which have already been found.

cover_all(P,i,PP) =
if BiP is_last_branch_in P
then cover_subtree(PP:BiP,i)
else
 1st pass : cover_all(P,i+1,PP:BiP)

 on backtrack : cover_subtree(PP:BiP,i)

cover_subtree(PP,i) =
 if gen_test(PP) = P′

 then if BiP′ is_last_branch_in P′
 then backtrack

 else cover_all(P′,i+1,PP)
 else backtrack

4

6.2 Illustration on the example

We first illustrate the modified strategy on our ex-
ample, before presenting the new algorithm. The paths
explored by the modified strategy are shown in Figure
4. We suppose that the first path generated is still P1.
The modified strategy first memorises P1, and then
starts to treat it. Its first branch, 2-4, is an empty ITE-
path and, instead of adding this branch to PP in the
same way as the default strategy, the modified strategy
forces exploration of a non-empty ITEpath first by add-
ing the opposite, branch 2-3, to PP and then trying to
generate a test-case to cover this partial path 2-3. Let us
suppose that the new test-case covers path P6 (and not
P5, which also has 2-3 as a prefix). The modified strat-
egy memorises this feasible path and proceeds to treat
the branch after 2-3, branch 4-5. This is a non-empty
ITEpath and the modified strategy adds this to the new
partial path, in the same way as the default strategy.
The next branch, 6-8, is not a branch of an ITEE so the
modified strategy treats it in the same way as the de-
fault strategy, creating the infeasible partial path 2-3:4-
5:6-7. The modified strategy memorises this infeasible
partial path and then backtracks over the treatment of
branch 4-5 in P6, adding its opposite, 4-6, to the new
partial path as for the default strategy to obtain partial
path 2-3:4-6. However, branch 4-6 is an empty ITEpath
so instead of just trying to generate a test case for the
new partial path, the modified strategy compares it to
the memorised infeasible partial paths (just 2-3:4-5:6-7
in this case) and feasible paths (P1 and P6). Indeed, if a
test were generated to cover the new partial path 2-3:4-
6, it would cover path P5, and the already-generated P6
is empty-ITE-path-slower-than P5. However the only
partial path starting with 2-3 and taking branch 6-7
tried so far was the infeasible partial path 2-3:4-5:6-7
and so a feasible path starting with 2-3:4-6:6-7 could be
maximal. The modified strategy therefore adds the suf-
fix 6-7 to the partial path 2-3:4-6 and tries to generate a
test for the resulting partial path 2-3:4-6:6-7. This is
infeasible but it doesn’t need to be memorised because
2-3:4-5:6-7 is already memorised. There are no more
continuations of 2-3:4-6 leading to maximal paths so
the modified strategy now backtracks over the treat-
ment of branch 2-4 in P1. This empty ITEpath was
replaced by its opposite in P6, so on backtracking it is
the original branch 2-4 which becomes the first and
only branch of the new partial path. Once again, the
new partial path ends in an empty ITEpath so the modi-
fied strategy compares it to the memorised infeasible
partial path and feasible paths and deduces that a feasi-
ble path starting with

4-5

6-8

P1

2-4

P6

2-3

infeasible infeasible

P2

6-7

 Figure 4: Paths for the modified strategy

2-4:4-5:6-7 would be maximal. It therefore adds the
suffix 4-5:6-7 to the partial path 2-4 and tries to gener-
ate a test for the resulting partial path 2-4:4-5:6-7. This
is P2, so a test is generated which covers exactly the
partial path, which is memorised as feasible. Now there
are no new branches to be explored, no more suffixes
of 2-4 which could be maximal paths and no treatments
of branches to backtrack over so test-case generation
stops.

6.3 Properties

Like the default strategy, the modified strategy car-
ries out a depth-first exploration of the tree of all feasi-
ble execution paths but it forces the left/right choice (to
explore the non-empty ITEpaths first) in the case of
empty ITEpaths. Depth-first exploration ensures that
when the strategy backtracks over the treatment of the
first branch in a non-empty path of an ITEE, all feasi-
ble and infeasible suffixes of the ITE are known, be-
cause the feasible part of the sub-tree rooted in the exit
from the non-empty ITEpath has been fully explored.
This is the basis for our first claim, which is that our
modified strategy
1. generates tests for all maximal paths

Note that in this example only 3 test-cases were
generated, successfully covering the 2 maximal paths,
and both infeasible partial paths were explored.

Obviously, the performance of the modified strat-
egy compared to the default strategy depends on the
element of non-determinism. However, we also claim
that our modified strategy
2. reduces (or, at worst, does not increase) unneces-

sary exploration of the tree of execution paths and
3. reduces (or, at worst, does not increase) genera-

tion of tests for paths which are not maximal.

5

6.4 Techniques

The implementation of the modified strategy is
based on two techniques:

The first is the storage of infeasible partial paths in
the form of “abstract partial paths”. These are (partial)
paths which abstract the precise path taken in each
ITEE, as explained below. They identify, as the same
abstract path, the paths which only differ in their tra-
versal of the ITEEs. The modified strategy uses them to
recognise and manage ITEEs, ensuring that partial
paths are explored in the right order.

The second technique is the concatenation, to cer-
tain non-maximal partial paths, of the suffixes from
“compatible” partial paths previously found to be in-
feasible. The “compatible” partial paths are those with
the same abstract prefix as the current partial path. This
concatenation replaces complete depth-first exploration
of the sub-tree of execution paths rooted at the current
partial path.

6.5 The detailed algorithm

We now present the detailed algorithm of the modi-
fied strategy in order to demonstrate that it has the
three properties mentioned above.

We first define the abstract partial paths used in the
modified strategy:

An abstract path is a (concrete) path in which
path fragments corresponding to a complete
path in an ITEE are replaced by an abstract
ITEE containing both the empty ITEpath and an
abstract non-empty ITEpath. This means that for
each abstract ITEE in an abstract path there are
two concrete instantiations, one containing the
empty ITEpath and one containing the non-
empty ITEpath. Note that in each abstract path,
each ITEE structure will be represented by one
abstract ITEE for each feasible non-empty ITE-
path. The definition of abstract paths is extended
to abstract partial paths.

Extra notation: the modified strategy needs a set of
infeasible abstract partial paths, denoted infeas and
initialised to the empty set, and also a set of feasible
paths, denoted feas and also initialised to the empty set.
Assignment is written :=, set union is denoted by U and
set membership is written є. We use the symbol ·
instead of : for concatenation of a branch to the end of
an abstract partial path as a reminder that abstract paths
contain abstract ITEEs. The addition of a branch which
is the end of a non-empty ITEpath causes the whole
non-empty ITEpath to be replaced in the abstract par-
tial path by an abstract ITEE. Iteration is written

foreach, the operation foreach_in_order iterates over
paths ordered according to the partial order: for each
successive ITEE, paths taking a non-empty ITEpath,
themselves ordered according to the remaining ITEEs
they contain, are treated before the others.

The modified strategy corresponds to the call
cover_max(P1,1,empty_path,empty_path) of the recur-
sive function cover_max(P,i,PP,APP) whose pseudo-
code is presented in Figure 5.

As shown by the pseudo-code, if the current branch
is the last in the path and not the first (and only) branch
in a non-empty path of an ITEE then the default strat-
egy is just extended to memorise feasible paths and
abstract infeasible partial paths (by calling
cover_max_subtree instead of cover_subtree). How-
ever, if the current branch is the last in the path and
also the first (and only) branch in a non-empty path of
an ITEE then there is no need to generate a test-case
for the path taking the alternative, empty, branch so the
default strategy backtracks immediately over the treat-
ment of the previous branch.

If the current branch is not the last branch in the
path nor an empty ITEpath nor the first branch in a
non-empty path of an ITEE then the default strategy is
just modified as above to call cover_max_subtree.

However, if it is the first branch in a non-empty
path of an ITEE, then when exploring its opposite (i.e.
the empty ITEpath) on backtrack, the modified strategy
calls cover_rest_subtree instead of cover_max_subtree.
Indeed, if two partial paths, PP1 and PP2, are identical
up to an ITEE, but PP1 takes a non-empty path through
the ITEE and PP2 an empty path, then potentially, ig-
noring feasibility, PP1 and PP2 have identical sub-
trees of path suffixes after the ITEE. Each of these suf-
fixes will form a path, P1, when concatenated to PP1
which is empty-path-slower-than the path, P2, which is
formed when the same suffix is concatenated to PP2.
However, some of these suffixes may be infeasible if
they are concatenated to PP1 but not if they are con-
catenated to PP2. There is no need to cover the path
formed by concatenating to PP2 a suffix which, when
concatenated to PP1 formed a feasible path. This is
why cover_rest_subtree looks for infeasible partial
paths which have a prefix with the same abstract repre-
sentation (i.e. are identical except for ITEEs) as the
current partial path. These are partial paths which were
infeasible with a non-empty ITEpath but may be feasi-
ble with an empty ITEpath. The situation is more com-
plicated if the current partial path contains several
ITEES because a partial path with, for example, one
empty ITEpath followed by one non-empty ITEpath is
not comparable, in our partial order, with the partial
path which is identical except that it

6

cover_max(P,i,PP,APP) =
if BiP is_last_branch_in P
then {
 if BiP starts_non_empty_ITEE_path
 then backtrack
 else
 cover_max_subtree(PP:BiP,APP·BiP,i) }
else if BiP starts_non_empty_ITEE_path

 then {
 1st pass :
 cover_max(P,i+1,PP:BiP,APP·BiP)

 on backtrack :
 cover_rest_subtree(PP:BiP,APP·BiP,i) }
 else if BiP is_empty_ITEE_path
 then {
 if gen_test(PP:BiP) = P′

 then {
 1st pass :

 feas := feas U P′ ;
 if BiP′ is_last_branch_in P′
 then backtrack

 else cover_max(P′,i+1,PP:BiP,APP·BiP)
 on backtrack :
 cover_rest_subtree(PP:BiP,APP·BiP,i)}
 else infeas := infeas U APP·BiP ;
 cover_max(P,i+1,PP:BiP,APP·BiP) }
 else {
 1st pass :
 cover_max(P,i+1,PP:BiP,APP·BiP)

 on backtrack :
 cover_max_subtree(PP:BiP,APP·BiP,i)}

cover_max_subtree(PP,APP,i) =
 if gen_test(PP) = P′

 then feas := feas U P′ ;
 if BiP′ is_last_branch_in P′
 then backtrack

 else cover_max(P′,i+1,PP,APP)
 else infeas := infeas U APP ;

 backtrack

cover_rest_subtree(PP,APP,i)=
foreach APPext є infeas {
 foreach_in_order PPext concretises APPext {
 if PP is_a_prefix_of PPext
 then {
 if not slower_feas_paths(Pext,APPext)
 then {
 if gen_test(PPext) = P′

 then {
 feas := feas U P′ ;
 if BiP′ is_last_branch_in P′
 then backtrack

 else cover_max(P′,i+1,PP,APP) }
 else backtrack } } } }

slower_feas_paths(Pext,APPext) if
 exists Pext′, PPext′ such_that (
 Pext′ є feas
 and PPext′ is_a_prefix_of Pext′
 and PPext′ concretises APPext
 and Pext′ empty_ITE_path_slower_than Pext)

Figure 5: Pseudo-code of the modified strategy

contains a non-empty path through the first ITEE and
an empty path through the second. This is why the
slower_feas_paths predicate is necessary.

If the current branch is not the last branch in the
path but is an empty ITEpath, then the modified strat-
egy overrides the left-right non-determinism of the de-
fault strategy to force exploration of the non-empty
ITEpaths first (unless they are all infeasible) and the
empty ITEpath itself on backtrack. This ensures that
when suffixes of the empty ITEpath are explored by
cover_rest_subtree, all infeasible suffixes of the non-
empty ITEpaths have been found.

Note that we have made several optimisations to
the algorithm as defined above but to improve clarity
these are not described.

7. Our second partial order

Our second partial order is based on loops. If a loop
has a number of iterations which varies with the value
of the inputs, then two paths which are identical except
for the number of iterations of this loop may not have
the same execution time and must be treated as two
separate paths. However, under certain conditions we
can consider that of these two paths, the one which
makes the most iterations of the same loop will have
the longest execution time. We can suppose that this is
the case if the following conditions are satisfied:

7

1) the same branches (if any) are taken in each
loop iteration ;

2) the data accessed in successive loop iterations
have addresses which are close enough to en-
sure that executing a particular iteration will
not avoid a future data-cache-miss ;

3) as for our first partial order, we must check
the effect of the successive loop iterations on
pointer values which are de-referenced after
loop exit.

Indeed, branch prediction mechanisms should not pre-
sent any problems in this case; they should always suc-
ceed in each iteration until the last, when they will al-
ways fail. As for data cache behaviour, if the same
branches are taken in each iteration then the same data
will be referenced, unless it is referenced using pointers
whose value changes from iteration to iteration, hence
the second condition.

It so happens that many real-life programs present
in real-time systems do contain loops respecting the
conditions above. In particular, programs written with
the aid of mathematical modelling software often con-
tain loops which traverse arrays in order to obtain a
linearised approximation (or interpolation) of the con-
tinuous graph of a mathematical function. These loops
typically search for the two x-coordinates of the dis-
crete graph which surround a given input value and
then return the corresponding y-coordinate of the lin-
earised approximation. If the graph has another dimen-
sion, then it will be treated in a similar way. Typically,
the search is not optimised but just consists of inspect-
ing one by one the array elements which represent the
x-coordinate values until the appropriate one is found
and then exiting the loop after a variable number of
identical iterations.

Let us define a second partial order on execution
paths:

Path Pi is identical-iteration-slower-than path
Pj if
� Pi and Pj are identical except for the num-

ber of iterations of certain loops and
� each of these loops has at least one iteration

and
� in each of these loops, all iterations are

identical and
� for each of these loops, Pi has more itera-

tions than Pj.

The partial order is restricted to loops with at least
one iteration because zero iterations of the loop may
result in different data cache behaviour than at least one
iteration of the loop because of the data references in
the body of the loop. Note that nested loops are not
considered and nor are loops with a mixture of an un-
broken sequence of identical iterations and some other,
non-identical, iterations too.

To generate tests to cover paths that are maximal in
this partial order, we have further modified PathCraw-
ler’s generation strategy in a similar way to that de-
scribed for the first partial order. This modification is
not described in detail here because it is more compli-
cated than for the first partial order, but it is based on
the same two basic techniques described in 6.4.

For this partial order, the modified strategy forces
exploration of an additional loop iteration first, in a
similar way to the exploration of non-empty ITEpaths.
When an additional loop iteration is infeasible, we have
reached the maximum number of iterations for the
given path so far. This must be memorised so that on
backtrack it can be compared to the current number of
loop iterations in similar paths. Indeed, loop exit is
only explored on backtrack and if it is exit from the
maximal number of iterations. In that case, the whole
sub-tree of feasible execution paths is explored. Other-
wise, the infeasible partial paths and feasible paths
found so far are studied to decide which suffixes to try
and cover, just as for our first partial order. The num-
ber of iterations of each loop with identical iterations is
abstracted in the abstract path and for each such loop in
the abstract path suffix, concrete loops are tried in des-
cending order of the number of iterations.

The first difficulty is in the analysis of the loop.
Identifying identical iterations is relatively straightfor-
ward. However, the loop head may have a complex
condition made up of multiple sub-conditions com-
bined in conjunctions and disjunctions. The loop may
also contain break instructions with equally compli-
cated conditions. In this case, we have to identify the
sub-conditions that immediately precede the start of a
new loop iteration and those that immediately precede
exit from the loop. We also have to identify the sub-
conditions whose negation immediately precedes the
start of a new loop iteration or loop exit and those
whose negation can lead to either. Note that if a path
contains a loop with just one iteration, then it is not
possible to know until backtrack whether it will need to
be compared to other paths in which there are more,
identical, iterations.

8

8. Perspectives

We tried our default and modified strategies on an
example of industrial real-time software comprising
1512 lines of commented C source code and 89 condi-
tional instructions but no loops. The default strategy
took several days to generate 846975 test-cases and our
modified strategy took about one day to generate 6554
test-cases. Geensys, our partners in the MaSCotTE
project, designed and implemented a test bench and ran
the two test sets on a HCS12X simulator to measure the
effective execution time of each test-case. The path
with the longest execution time in the first set was in-
deed covered by a test-case in the second set.

In fact, the modified strategy generated all the test-
cases in a few hours and the rest of the time was spent
trying in vain to find solutions for continuations of par-
tial paths ending in empty ITEpaths. We are currently
studying how to reduce the number of continuations
explored by taking into account the dependencies be-
tween the code in the ITE body or loop iteration and
the final branch condition in the infeasible partial path.

The techniques used to generate paths which are
maximal in our partial orders could certainly be devel-
oped further and more widely used to implement other
structural testing strategies which have nothing to do
with WCET, but where certain paths, or path frag-
ments, do not need to be covered. Abstracting the path
fragment which traverses a control structure (ITE, loop
or function call) helps to avoid unnecessary exploration
of this part of the program under test. For example, a
path-coverage test criterion may not impose coverage
of all paths which only differ in the number of identical
iterations of a certain loop or in the path taken through
a called function. The memorisation of infeasible par-
tial paths ensures that at least one instance of each fea-
sible path containing the loop or function call is tested.
Indeed, we already used the memorisation of infeasible
partial paths to treat function calls in [7] but in that
approach the traversal of the function was “abstracted”
by its specification. In an alternative approach to the
treatment of function calls, [9] store not infeasible par-
tial paths but the result of symbolic execution of al-
ready-explored paths. In [10], memorisation of execu-
tion paths and simple dependency analysis is used to
eliminate path fragments which have already been
tested.

Acknowledgements

We would like to thank our colleagues Nikolaï

Kosmatov and Bernard Botella for their helpful advice.
This work is partially funded by the French Agence
Nationale pour la Recherche (PREDIT and Num@tec
Automotive project MaSCotTE).

References

[1] R. Heckmann, M. Langenbach, S. Thesing and R. Wil-
helm, The influence of processor architecture on the de-
sign and the results of WCET tools, In Proceedings of
the IEEE 91(7): 1038-1054 (2003)

[2] N. Williams,WCET Measurement using modified Path
Testing, In Proc. WCET’05, Palma de Mallorca, Spain,
July 2005

[3] Meng-Luo Ji, Ji Wang, Shuhao Li and Zhi-Chang Qi,
Automated WCET Analysis based on Program Modes,
In Proc. AST’06, Shanghai, China, May 2006

[4] N. Williams, B. Marre, P. Mouy and M. Roger,
PathCrawler: Automatic generation of path tests by
combining static and dynamic analysis, In Proc. EDCC-
5, Budapest, April 2005

[5] K. Sen, D. Marinov, and G.Agha, Cute: A concolic unit
testing engine for C, In Proc. ESEC/FSE'05, Lisbon,
Portugal, September 2005

[6] C.Cadar, V.Ganesh, P.M.Pawlowski, D.L.Dill, and
D.R.Engler, Exe: automatically generating inputs of
death, In Proc. ACM Conference on Computer and
Communications Security, 2006

[7] P. Mouy, B. Marre, N.Williams and P. Le Gall, Genera-
tion of all-paths unit test with function calls, In Proc.
ICST’08, Lillehammer, Norway, 2008

[8] M. Wallace, S. Novello and J.Schimpf, ECLiPSe: A
platform for Constraint Logic Programming, IC Parc,
Imperial College, London, Aug 1997

[9] S. Anand, P. Godefroid, N. Tillmann, Demand-Driven
Compositional Symbolic Execution, In Proc. TACAS
2008, Budapest, Hungary, 2008

[10] P. Boonstoppel, Cristian Cadar, Dawson Engler, RWSet:
Attacking path explosion in constraint-based test gener-
ation, In Proc. TACAS 2008, Budapest, Hungary,
March-April 2008

9

