
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Towards exhaustive branch coverage with
PathCrawler

Nicky Williams
CEA, LIST,

Université Paris-Saclay,
F-91120 Palaiseau, France

nicky.williams@cea.fr

Abstract— Branch coverage of source code is a very widely

used test criterion. Moreover, branch coverage is a similar

problem to line coverage, MC/DC and the coverage of assertion

violations, certain runtime errors and various other types of test

objective. Indeed, establishing that a large number of test

objectives are unreachable, or conversely, providing the test

inputs which reach them, is at the heart of many verification

tasks. However, automatic test generation for exhaustive branch

coverage remains an elusive goal: many modern tools obtain

high coverage scores without being able to provide an

explanation for why some branches are not covered, such as a

demonstration that they are unreachable. Concolic test

generation offers the promise of exhaustive coverage but covers

paths more efficiently than branches. In this paper, I explain

why, and propose different strategies to improve its

performance on exhaustive branch coverage. A comparison of

these strategies on examples of real code shows promising

results.

Keywords—automatic test generation, branch coverage,

reachability, concolic

I. INTRODUCTION

A. The importance of exhaustive branch coverage

Structural coverage criteria are based on the simple
observation that if the part of the program containing a bug is
not executed (a.k.a. covered) by any test case then the bug
cannot be detected. Various structural coverage criteria
defining test objectives in source code, binary code and
models or specifications have been proposed. The structural
code coverage criteria mostly widely used in industry seem to
be line coverage, branch coverage and MC/DC. These are
often imposed by certification norms. Moreover these norms
often impose 100% coverage of coverable test objectives and,
by extension, some justification of why certain test objectives
cannot be covered. We call this exhaustive coverage and
define it as the generation, for all test objectives, of either (a)
a test case input covering the objective or (b) an explanation
of the lack of a test case. We insist on the difference between
exhaustive coverage and bug finding i.e. the speedy coverage
of many test objectives with no guarantee of completion.

 Automatic test input generation techniques for exhaustive
coverage must keep track of which objectives have already
been covered in order to know when to stop test generation
and to try to avoid generating numerous test cases which cover
the same objectives while failing to cover others. Moreover,
in order to provide an explanation of failure to cover a
particular test objective, test generation should not stop until
all possible attempts to cover the objective have been made
and should then report on the result of these attempts. Let us
suppose that the uncovered objective is a branch in the source
code. If there seem to be several partial paths through the
source code leading to the branch, then all these paths should

be considered. If the infeasibility of all paths to a branch can
be automatically demonstrated, then this is the explanation of
failure to cover the branch. If infeasibility of one or more paths
cannot be demonstrated automatically, for example, because a
constraint solver times out, then the explanation for these
paths is the formula whose satisfiability the solver was trying
to prove or disprove.

We focus on the exhaustive coverage of branches because
the problems that it poses can be generalised to several other
problems. Indeed, if we consider that each branch leads to a,
possibly empty, sequential block of lines then the only
difference between line coverage and branch coverage is the
coverage of "empty" branches. MC/DC imposes the further
requirement to cover certain pairs of combinations of atomic
branches, which essentially involves additional book-keeping.
Moreover, the coverage of other test objectives which can be
defined in the source code (e.g. assertion violations), or even
as pseudo-branches (e.g. run-time errors such as division by
zero) or source code annotations [1], is also similar to branch
coverage. Techniques for branch coverage can be extended to
these test criteria and indeed already are in some automatic
test generation tools such as Pex/Intellitest [2], KLEE [3] and
PathCrawler [4]. Other verification tasks apart from testing,
often framed in terms of reachability, also pose problems
similar to exhaustive branch coverage. In these, unwanted
program states are defined and the problem is to demonstrate
whether they can occur. If they can, then the user often needs
a counter-example, i.e. test inputs, to help with debugging.

B. Techniques for branch coverage

Static analysis based on abstract interpretation can be an
efficient technique for detecting unreachable branches but it
cannot generate test input values and because of the over-
approximation which is inherent in this approach, it cannot
guarantee detection of all unreachable branches. It can be used
in exhaustive branch coverage as a prelude to automatic test
generation in order to reduce the number of test objectives [5].

Most test generation techniques currently used for branch
coverage fall into four categories

1. Search-based testing is based on meta-algorithms, such as
genetic algorithms, which can only be used for bug-
finding because they cannot guarantee any results of test
generation or provide any justification for uncovered
objectives.

2. Fuzz testing can rapidly cover branches on large code
bases. It often incorporates similar techniques to search-
based testing or uses some symbolic execution. It can
only be used for bug-finding.

3. The recent DiffBlue Cover tool for Java [6] uses model-
checking. This technique could, in theory, be used for
exhaustive branch coverage but DiffBlue Cover does
guarantee that all reachable branches will be covered and This work was partially supported by ANR grant ANR-18-CE25-0015-01.

does not seem to provide any justification for uncovered
branches.

4. The Pex/Intellitest, KLEE and PathCrawler tools are all
based on symbolic execution. These techniques can be
used for exhaustive branch coverage but only if there is
no "concretisation" of branch constraints and if a
systematic test generation strategy, rather than one based
on heuristics or randomisation, is used. To our
knowledge, none of the strategies proposed for KLEE
offer exhaustive branch coverage and only PathCrawler
can provide an explanation for uncovered branches.

C. Concolic generation and hopeful flipping

This paper considers exhaustive branch coverage in
PathCrawler, which uses a concolic test generation method. In
this method, the first test case is generated by an arbitrary
choice of test inputs which satisfy the precondition (which is
supplied by the user and encodes the test context). For this and
each subsequently generated test case, symbolic execution is
used to translate the conditions of the successive branches in
the path, p, taken by the test case, into constraints over the
input variable values. The resulting conjunction of constraints,
c0,c1,... is the path predicate, pred(p), which defines the input
values of all test cases which would cover p. In practice, the
source code must be normalised, in order to unroll loops,
separate out side-effects, decompose complex conditions, etc.
Moreover, variables used when accessing array elements or
dereferencing pointers give rise to additional alias constraints.
System calls must also be stubbed. But we can consider here,
without loss of generality, that each of the constraints c0,c1,...
in pred(p) represents the condition of one of the branches
b0,b1,... in p. In order to generate test inputs that will cover a
different path, one of the constraints, ci, must be negated
(a.k.a. flipping the branch bi). The result, pred(flip(p,i)), is the
conjunction of the prefix of pred(p) up to ci-1 and the negation,
-ci, of ci. It is the predicate of the path prefix, flip(p,i), formed
by appending the opposite branch, -bi, of bi to the prefix up to
bi-1 of p. pred(flip(p,i)) is submitted to a constraint solver. A
solution to this formula gives the input values of a new test
case which will cover one of the feasible paths with prefix
flip(p,i).

If the constraint solver finds that pred(flip(p,i)) is
unsatisfiable then we have the demonstration that flip(p,i) is
an infeasible path prefix. If the constraint solver times out,
then pred(flip(p,i)) can be used, if necessary, in an explanation
of non-coverage of either -bi or some branch which could, in
theory, be reached from -bi.

Constraint solving is NP-hard and may run until timeout
so in order to limit worst-case exhaustive test generation time,
we should limit the number of solver calls and certainly avoid
calling the solver several times to solve the same problem.
Another reason for limiting constraint solving is to limit the
number of generated tests and hence the time to treat each test.

Classic concolic test generation reduces the number of
solver calls for path coverage but may be less efficient for
branch coverage. Indeed, the concolic method interleaves
generation of new tests (each time a branch is flipped) and
exploration of the paths covered by the previously generated
tests. Covered paths are feasible and so are all their prefixes
so by flipping a single branch in a feasible prefix, the concolic
method limits solver calls by ensuring detection of the shortest
prefixes of all the infeasible paths. The unique feature of the
concolic method is that we do not know which path will be

covered by the solution recovered from the constraint solver.
In the case of path coverage, this does not matter because all
feasible paths must be covered in any case and the concolic
method ensures that constraint solving is only performed once
for each node in the tree of feasible execution paths (FEP
tree). However, we do not usually need to cover all feasible
paths in order to cover all reachable branches. This is because
most branches occur in several paths (although exhaustively
trying all paths to an unreachable branch can sometimes
necessitate full path coverage).

In concolic test generation for branch coverage, if the
opposite of some branch, bi, is not yet covered (and in the
absence of any other information) then we should always try
to flip bi because if successful, we are sure to cover an
uncovered branch. However, if the opposite branch has
already been covered then we must decide whether to flip bi
in the hope that the suffix of the path covered by the newly
generated case will contain some uncovered branch. We will
call this hopeful flipping.

D. Research question

This article investigates how to reduce hopeful flipping
and tries to answer the following research question:
Does reducing hopeful flipping in concolic generation for
exhaustive branch coverage result in fewer solver calls?

II. OUR EXAMPLES

The strategies described here were tried on 7 real-life
examples of C functions: A (a string-processing function
from the Apache code), ANU (the same example with no
unreachable branches), D (another string-processing
function), E (the GNU Core Utils Echo utility), L (checks a
property of credit-card numbers), T (the Tcas control logic)
and TNU (the same example with no unreachable branches).
The table shows the number of lines of code, branches,
unreachable branches (with the given precondition) and loops
(with a variable number of iterations) for each example.

 LOC Branches Unreachable Loops

A 70 30 1 4

DNU 70 20 0 1

E 340 128 37 6

L 50 18 2 2

T 170 80 1 0

All the strategies except MT were run 10 times on each
example and the results averaged, in an attempt to smooth the
effects of non-determinism in constraint solving. The MT
strategy, which combines the non-determinism of multi-
threading with that of constraint solving, was run 100 times
on each example.

III. THE DFS STRATEGY

The first test generation strategy tried on our example is
simple depth-first search of the FEP tree with a stopping
criterion which is coverage of all the reachable branches.

As explained in the Introduction, on order to construct
pred(flip(p,i)), the concolic test generator must traverse
pred(p), adding each constraint c0,c1,... to the constraint
satisfaction problem (CSP) until it reaches ci, where it is -ci,

which is added. However, each newly covered path (except
for the first) shares a prefix with the previously generated path.
To avoid repeating the addition of the constraints of shared
prefixes, we use incremental constraint solving and the state
of the solver is stored in a stack after addition of each
constraint. When a new test case is generated, covering a new
path suffix, s, then instead of resubmitting the constraints from
the shared prefix, we can just recover the state of the solver
from the stack and start to add the constraints from s. In fact,
for each ci, we use backtracking to the previous state of the
solver to alternate between flipping or not. If we choose to flip,
then we add -ci to the CSP and then try to resolve it. If we
choose not to flip then we add ci and proceed to the next
constraint, ci+1.

This is why it is particularly efficient to use an incremental
solver and backtracking. To facilitate this, PathCrawler is
implemented in Constraint Logic Programming (CLP) and
uses the COLIBRI solver [7]. Note that adding a constraint to
our CSP triggers constraint propagation. This has quadratic
complexity but it enables certain forms of unsatisfiability to
be detected before full constraint resolution, whose
complexity is even greater. Below, we do not count constraint
propagation as a solver call.

In our DFS strategy, the first branch to be flipped in each
newly-covered path suffix, s, is the final branch. If this causes
a new test case to be generated then the new suffix, s’, is then
treated, as well as all suffixes generated from s’. After that, the
generator backtracks back down s, flipping each branch in the
same way. Test generation stops when either all branches have
been covered or no branches are left to flip.

IV. THE EAGER STRATEGY

The next strategy “reverses” DFS by systematically
flipping each branch of s first, and, if successful, exploring the
new suffix, s’, before backtracking over the flip in order to
proceed to the next branch in s. This makes the strategy more
breadth-first and as a result, changes the order in which certain
suffixes might be covered.

V. THE LOOKAHEAD STRATEGY

This strategy tries to improve on Eager by taking account
of whether flipping each branch could increase coverage. It is
the same as Eager except that each branch is only flipped if its
opposite is either uncovered or else could possibly lead to an
uncovered branch. Whether the opposite branch could
possibly lead to an uncovered branch is decided by a simple
test of connectivity in the control-flow graph, without trying
to evaluate the feasibility of the path to the uncovered branch.

VI. THE ELSE STRATEGY

This strategy tries to improve on Lookahead by prioritising
flipping of uncovered branches over hopeful flipping. It starts
by eagerly flipping just the branches in s whose opposite is
uncovered and then backtracks down s to hopefully flip any
unflipped branches whose opposite may lead to uncovered
branches.

VII. THE MT STRATEGY

The two previous strategies modified Eager, which
introduced an element of breadth-first search. However, Eager
is not true breath-first search because the earlier branches in
the suffix are still flipped before the later ones and suffixes
covered by newly generated tests are explored before

completing exploration of the suffixes covered by the earlier
tests. In order to implement “fairer” breadth-first search
strategies while still taking advantage of the efficiency of
backtracking, we implemented Else using multi-threading.

In this strategy, each thread treats one covered path and
each thread is treated in turn. Moreover, threads are classified
as high-priority while the treatment advances along s and then
become low-priority when the treatment backtracks back
down s for hopeful flipping. Low-priority threads are only
active while no threads are still high-priority. The information
on which branches are covered is shared between threads.

VIII. RESULTS

Exhaustive branch coverage was achieved on all examples
and strategies. Figures 1 and 2 illustrate, on the different
examples, the variation of hopeful flips and solver calls over
the successive strategies. The value for the DFS strategy is
taken as a reference and the values for the other strategies
calculated as a percentage of this. Note that these DFS base
values were much higher for A (1427 and 1719) than for ANU
(152 and 165) but only slightly higher for T than for TNU.

Fig. 1 Hopeful flips

Fig. 2 Solver calls

The answer to our research question is that there is a
correlation between hopeful flips and solver calls for all
examples and strategies.

However, the influence of fortuitous coverage, and the
way it varies on different examples, is also evident. It is the

0%

50%

100%

150%

200%

250%

A ANU DNU E L T TNU

Eager Lookahead Else MT

0.0%

50.0%

100.0%

150.0%

200.0%

250.0%

A ANU DNU E L T TNU

Eager Lookahead Else MT

reason for which the results for Eager are sometimes worse
than those for DFS and similarly for Else and Lookahead.

IX. RELATED WORK

The work described here is related to a large body of work
on devising symbolic-execution-based test generation
strategies to limit path explosion [8]. Some researchers have
proposed to tackle this problem with strategies to decide
which branch to hopefully flip next, often based on heuristics,
such as the shortest theoretical path to an uncovered branch
[3][9]. Other approaches are based on a decomposition of the
search space, for example by treating called functions
separately and storing the results [10], or by identifying non-
interfering blocks of code [11]. There has also been work on
pruning the search space, by taking advantage of redundancies
in the FEP tree to use information learnt during generation of
previous tests [12][13][14]. Our work is complementary to
most of this. It does propose basic pruning of the search space
(based on connectivity in the control-flow graph) but tries
above all to flip uncovered branches first, in order to limit the
number of hopeful flipping choices, rather than focusing on
how to choose which branch to hopefully flip next.

Our MT strategy is closely related to the forking of
symbolic processes at the heart of the KLEE tool, which is not
based on concolic generation. Instead, it builds a tree of
symbolic processes which mirrors the FEP tree structure. At
each node in the FEP tree, the feasibility of the prefix ending
in one of the branches is checked and then, if feasible, that of
the prefix ending in the other branch. If both are feasible,
KLEE clones the symbolic execution state so that it can
explore both paths. It is only at the end of a path, or when a
possible assertion violation or run-time error is encountered,
that it generates a test. KLEE has to make more feasibility
checks (up to 2 per node of the FEP tree) than the concolic
method and uses a constraint cache to limit solver calls. It does
not benefit from incremental constraint solving or
backtracking and this may make it less efficient [15] but
breadth-first generation strategies are easily implemented. To
do that in PathCrawler, while keeping the efficiency of
backtracking, we used multi-threading. Our MT strategy
clones not only the symbolic execution state, as in KLEE, but
also the state of our incremental solver.

PathCrawler is implemented in CLP, which was also used
to compare different test generation strategies to explore
executable behavior models in [16]. They discuss the
difficulty of implementing breadth-first strategies in CLP and
instead of multi-threading, propose an interleaving strategy.

Unlike most previous work, ours explicitly takes account
of how unreachable branches should be treated in exhaustive
branch coverage.

X. CONCLUSIONS

The answer to our Research Question - whether we can
reduce the number of solver calls by reducing hopeful flipping
in concolic test generation - was positive for our examples.

Our MT strategy is breadth-first, prioritises the flipping of
uncovered branches and conditions the flipping of the other
branches to control-flow graph connectivity to an uncovered
branch. MT was designed to limit the number of hopeful flips
when performing exhaustive branch coverage and
successfully did so on all but the A and ANU examples.
Indeeed, our experiments show that the effectiveness of

concolic test generation strategies varies somewhat according
to the tested function.

The next step in reducing the number of hopeful flips is by
supplementary measures to prune the search space and this is
what we will investigate in future work.

XI. REFERENCES

[1] S. Bardin, N. Kosmatov, B. Marre, D. Mentre, N.
Williams, "Test Case Generation with
Pathcrawler/LTest: How to Automate an Industrial
Testing Process", In Proc. ISOLA 2018

[2] https://docs.microsoft.com/en-
us/visualstudio/test/intellitest-manual/

[3] C. Cadar, D. Dunbar, D. Engler, "KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for
Complex Systems Programs", In Proc. OSDI 2008

[4] N. Williams, B. Marre, P. Mouy, M. Roger,
"PathCrawler: automatic generation of path tests by
combining static and dynamic analysis", In Proc. EDCC,
2005

[5] E. Lavillonnière, D. Mentré D. Cousineau, "Fast,
Automatic, and Nearly Complete Structural Unit Test
Generation combining Genetic Algorithms and Formal
Methods", In Proc. TAP 2019

[6] diffblue.com

[7] https://smt-comp.github.io/2020/system-
descriptions/COLIBRI.pdf

[8] A. Sabbaghi, M. Reza Keyvanpour, "A Systematic
Review of Search Strategies in Dynamic Symbolic
Execution", Computer Standards & Interfaces, Vol. 72,
October 2020

[9] T. Xie, N. Tillmann, J. de Halleux W. Schulte, "Fitness-
guided path exploration in dynamic symbolic execution",
In Proc. DSN, 2009

[10] R. Qiu, G. Yang, C. S. Pasareanu, S. Khurshid,
"Compositional Symbolic Execution with Memoized
Replay", In Proc. ICSE, 2015

[11] R. Majumdar, R. Xu, "Reducing Test Inputs Using
Information Partitions", In Proc. CAV, 2009

[12] P. Boonstoppel, C. Cadar, D. R. Engler, "RWset:
Attacking path explosion in constraint-based test
generation", In Proc. TACAS, 2008

[13] M. Delahaye, B. Botella A. Gotlieb, "Infeasible path
generalization in dynamic symbolic execution",
Information & Software Technology, Vol. 58, 2015

[14] C. Gomes do Val, "Conflict-Driven Symbolic
Execution", MSc thesis, University of British Columbia,
(Vancouver), March 2014

[15] T. Liu, M. Araújo, M. d’Amorim and M. Taghdiri, "A
Comparative Study of Incremental Constraint Solving
Approaches in Symbolic Execution", In Proc. HVC, 2014

[16] A. Pretschner, "Classical Search Strategies for Test Case
Generation with Constraint Logic Programming", In
Proc. Formal Approaches to Testing of Software, 2001

