
The SANTE Tool: Value Analysis, Program Slicing and

Test Generation for C Program Debugging

Omar Chebaro1,2, Nikolai Kosmatov1, Alain Giorgetti2,3, and Jacques Julliand2

1 CEA, LIST, Software Safety Laboratory, PC 94, 91191 Gif-sur-Yvette France

firstname.lastname@cea.fr
2 LIFC, University of Franche-Comté, 25030 Besançon Cedex France

firstname.lastname@lifc.univ-fcomte.fr
3 INRIA Nancy - Grand Est, CASSIS project, 54600 Villers-lès-Nancy France

Abstract. This short paper presents a prototype tool called SANTE (Static ANal-

ysis and TEsting) implementing an original method combining value analysis,

program slicing and structural test generation for verification of C programs.

First, value analysis is called to generate alarms when it can not guarantee the

absence of errors. Then the program is reduced by program slicing. Alarm-

guided test generation is then used to analyze the simplified program(s) in or-

der to confirm or reject alarms.

Keywords: static analysis, program slicing, all-paths test generation, run-time

errors, alarm-guided test generation.

1 Introduction

Software validation remains a crucial part in software development process. Soft-

ware testing accounts for about 50% of the total cost of software development. Auto-

mated software validation is aimed at reducing this cost. The increasing demand on

software validation has motivated much research and two major techniques have

improved in recent years, static and dynamic analysis. They arose from different

communities and evolved along parallel but separate tracks. Traditionally, they were

viewed as separate domains. However, static and dynamic analysis have comple-

mentary strengths and weaknesses and combining them is of significant interest for

program debugging.

This paper presents our tool called SANTE (Static ANalysis and TEsting) combin-

ing value analysis, program slicing and structural testing for the verification of C pro-

grams. In [1], we described an earlier version of the SANTE method combining value

analysis and structural testing for C program debugging. The method used value

analysis to report alarms of possible run-time errors (some of which may be false

alarms), and test generation to confirm or to reject them. The method produced for

each alarm a diagnostic that can be safe for a false alarm, bug for an effective bug

confirmed by some input state, or unknown if it does not know whether this alarm

is an effective error or not. Experimental results showed that the combined method

is better than each technique used independently. It is more precise than a static

analyzer and more efficient in terms of time and number of detected bugs than a

concolic structural testing tool used alone, or even guided by the exhaustive list of

alarms for all potentially threatening statements.

Program p Context

Value Analysis

p, Alarms

Slicing

pal l p1 . . . pn

or or

Dynamic Analysis

Diagnostic

Fig. 1. SANTE Debugging Process

In the new version of the SANTE tool presented in this paper, we add program slic-

ing to our combination in order to simplify and reduce the source code before test

generation. Program slicing [2] is a technique for decomposing programs based on

data and control-flow information with respect to a given slicing criterion (e.g. one

or several program statements). We present two different usages of program slicing.

First program slicing is performed one time with respect to the set of all alarms. Sec-

ond program slicing is performed n times, once with respect to each alarm (n is the

number of alarms).

Our implementation uses FRAMA-C, a framework for static analysis of C pro-

grams, and PATHCRAWLER, a structural test generation tool. FRAMA-C [3] is being

developed in collaboration between CEA LIST and the ProVal project of INRIA Saclay.

Its software architecture is plug-in-oriented and allows fine-grained collaboration of

analysis techniques. Static analyzers are implemented as plug-ins and can collab-

orate with one another to examine a C program. FRAMA-C is distributed as open

source with various plug-ins (i.e. value analysis, dependency analysis, program slic-

ing, weakest precondition, ...). Developed at CEA LIST, PATHCRAWLER [4–6] is a test

generation tool for C functions respecting the all-paths criterion, which requires to

cover all feasible program paths, or the k-path criterion, which restricts the genera-

tion to the paths with at most k consecutive iterations of each loop.

The paper is organized as follows. Section 2 describes our tool and its implemen-

tation. Section 3 provides some perspectives and concludes.

2 The SANTE tool on a running example

This section demonstrates how, given a C program p and its execution context, the

SANTE tool applies value analysis, program slicing and dynamic analysis for its de-

bugging (see Fig. 1). This process is fully-automatic. The execution context, or pre-

condition, defines value ranges for acceptable inputs of p and relationships between

them. We illustrate each step of the method on the example of Fig. 2a. Given a string

0 int eurocheck (char * s t r) {

1 unsigned char sum;

2 char c [9] [3] = { "ZQ" , "YP" , "XO" ,

3 "WN" , "VM" , "UL" , "TK" , " SJ " , "RI" } ;

4 unsigned char checksum [1 2] ;

5 int i = 0 , len = 0 ;

6 i f (s t r [0] >=97 && s t r [0] <=122)

7 s t r [0]−=32; / / c a p i t a l i z e

8 i f (s t r [0] < ’ I ’ | | s t r [0] > ’Z ’)

9 return 2 ; / / invalid char

10 i f (s t r l e n (s t r) ! = 12)

11 return 3 ; / / wrong length

12 len = s t r l e n (s t r) ;

13 checksum [i]= s t r [i] ;

14 for (i =1; i <len ; i ++){

15 i f (s t r [i]<48 | | s t r [i] >57)

16 return 4 ; / / not a d i g i t

17 checksum [i] = s t r [i]−48}

18 sum=0;

19 for (i =1; i <len ; i ++)

20 sum+=checksum [i] ;

21 while (sum>9)

22 sum= ((sum/10)+(sum%10));

23 for (i =0; i <9; i ++)

24 i f (checksum[0]== c [i] [0])

25 break ;

26 i f (sum! = i)

27 return 5 ; / / wrong checksum

28 return 0 ; } / /OK

0 int eurocheck (char * s t r) {

1 unsigned char sum;

2 char c [9] [3] = { "ZQ" , "YP" , "XO" ,

3 "WN" , "VM" , "UL" , "TK" , " SJ " , "RI" } ;

4 unsigned char checksum [1 2] ;

5 int i = 0 , len = 0 ;

60 / /@ assert (\ valid (s t r + 0)) ;

6 i f (s t r [0] >=97 && s t r [0] <=122)

7 s t r [0]−=32;

8 i f (s t r [0] < ’ I ’ | | s t r [0] > ’Z ’)

9 return 2 ;

10 i f (s t r l e n (s t r) ! = 12)

11 return 3 ;

12 len = s t r l e n (s t r) ;

130 / /@ assert (\ valid (s t r+ i)) ;

13 checksum [i]= s t r [i] ;

14 for (i =1; i <len ; i ++){

150 / /@ assert (\ valid (s t r+ i)) ;

15 i f (s t r [i]<48 | | s t r [i] >57)

16 return 4 ;

170 / /@ assert (\ valid (checksum+ i)) ;

17 checksum [i] = s t r [i]−48}

18 sum=0;

19 for (i =1; i <len ; i ++)

200 / /@ assert (\ valid (checksum+ i)) ;

20 sum+=checksum [i] ;

21 while (sum>9)

22 sum= ((sum/10)+(sum%10));

23 for (i =0; i <9; i ++)

24 i f (checksum[0]== c [i] [0])

25 break ;

26 i f (sum! = i)

27 return 5 ;

28 return 0 ; }

a) Function eurocheck b) Function eurocheck with alarms

Fig. 2. Running example before and after value analysis

str representing the serial number of a euro banknote, this function determines

whether the serial number is valid or not. Such a number normally contains one let-

ter followed by several digits. We define the precondition for the functioneurocheck
as:

str is NULL or a zero-terminated string.

2.1 Step 1: Value analysis

SANTE starts by applying value analysis (see Fig. 1) to eliminate as many potential

threats as possible. When the risk of a run-time error cannot be excluded by the

0 void eurocheck (char * s t r) {

5 int i , len ;

60 / /@ assert \ valid (s t r +0);

6 i f (s t r [0] >=97 && s t r [0] <=122)

7 s t r [0]−=32;

8 i f (s t r [0] < ’ I ’ | | s t r [0] > ’Z ’)

9 return ;

10 i f (s t r l e n (s t r) ! = 12)

11 return ;

12 len = s t r l e n (s t r) ;

14 for (i =1; i <len ; i ++){

150 / /@ assert \ valid (s t r+ i) ;

15 i f (s t r [i]<48 | | s t r [i] >57)

16 return ; } }

0 void eurocheck (char * s t r) {

5 int i , len ;

61 i f (0 >= length (s t r))

62 error () ;

63 else

6 i f (s t r [0] >=97 && s t r [0] <=122)

7 s t r [0]−=32;

8 i f (s t r [0] < ’ I ’ | | s t r [0] > ’Z ’)

9 return ;

10 i f (s t r l e n (s t r) ! = 12)

11 return ;

12 len = s t r l e n (s t r) ;

14 for (i =1; i <len ; i ++){

151 i f (i >= length (s t r))

152 error () ;

153 else

15 i f (s t r [i]<48 | | s t r [i] >57)

16 return ; } }

a) The slice without error branches b) The slice with error branches

Fig. 3. The slice with respect to line 15, before and after adding error branches

(overapproximated) sets of possible values of variables for some statement, value

analysis reports a threat for this statement, that is also called an alarm. In other

words, value analysis proves the absence of errors for some potential threats and

computes a set of alarms reporting the remaining threats. Our implementation uses

the value analysis plug-in of FRAMA-C.

For the program of Fig. 2a, value analysis returns five alarms for (the statements

at) lines 6, 13, 15, 17 and 20. At line 6, we are reading the first character str[0].

This alarm is a bug since str can be empty. At line 13, value analysis reports that

str[i] may be an out-of-bound access. This alarm is a false alarm because if the

length of str is not equal to 12, the program will return wrong length at line 11 and

the execution will never reach line 13. At line 15, the alarm reported is also a false

alarm. Here value analysis does not unroll all iterations, it is configured to unroll the

first two iterations and then it approximates. Same for the alarms at line 17 and line

20.

Technically, the FRAMA-C value analyzer marks each alarm by an annotation

printed just before it using the assert keyword (see Fig. 2b). For instance, at line

15, the overapproximated set of values calculated for i contains values greater than

the length of str and the annotation

/ /@ assert (\ valid (s t r+ i)) ;

is added just before line 15 (see line 150 in Fig. 2b) to report that the array access

str[i] may be out-of-bound. The reader will find more information on the ACSL

annotation language used by FRAMA-C in [3].

2.2 Step 2: Program slicing

The second step automatically simplifies the program by program slicing. In this tool

demostration, we show three different ways to simplify the program p.

1. The program p is directly analyzed by dynamic analysis without any simplifica-

tion by program slicing. The earlier version of the SANTE method presented in [1]

was limited to this unique option. Its main drawback is that dynamic analysis on

a large non-simplified program may take much time or not terminate, leaving a

lot of alarms unknown.

2. Program slicing is applied once and the slicing criterion is the set of all alarms of

p (formally speaking, the set of threatening statements containing these alarms).

We obtain one simplified program pal l containing the same threats as the orig-

inal program p. Then dynamic analysis is applied to pal l (see Fig. 1). Dynamic

analysis is executed only once and runs faster than for p since it is applied to its

simplified version pal l . For the running example, pal l contains only 18 lines.

3. Let n be the number of alarms in p. Program slicing is performed n times, once

with respect to each alarm ai , producing simplified programs pi (1 ≤ i ≤ n).

Then dynamic analysis is called n times to analyze the n resulting programs pi

(see Fig. 1). The advantage of this option is producing for each alarm ai the mini-

mal slice pi preserving the threatening statement of ai . For the running example,

we obtain five slices whose sizes vary from 3 to 16 lines. Fig. 3a shows an example

of a slice for the threat in line 15.

2.3 Step 3: Dynamic analysis

Program slicing is followed by the last step, dynamic analysis, applied to all simpli-

fied programs. Dynamic analysis tries to activate each potential threat, i.e. to cover

execution paths in which the associated alarms are triggered. This step produces for

each alarm a diagnostic: safe, bug or unknown.

In our implementation, we use the PATHCRAWLER tool [5] whose method is sim-

ilar to the concolic testing [7], also called dynamic symbolic execution. Given the C

source code of the function under test, the generator explores program paths in a

depth-first search using symbolic and concrete execution.

Technically, in order to force test generation to activate potential errors on each

feasible program path in p, we add special error branches into the source code of p

in the following way. For each alarm, its threatening statement, say

threatStatement ;

is automatically replaced by the following branching statement:

i f (errorCondition)

error () ;

else

threatStatement ;

where the condition determines if the error reported by the alarm occurs. For the

running example, the result is shown in Fig. 3b. Test generation is then executed for

the C program with error branches denoted p ′. We call this technique alarm-guided

test generation. If the errror condition is verified in p ′, a run-time error can occur in

p, so the function error() reports the error and stops the execution of the current

test case. If there is no risk of run-time error, the execution continues normally and

p ′ behaves exactly as p. The transformation of p into p ′ adds new branches for error

and error-free states so that PATHCRAWLER algorithm will automatically try to cover

error states. For an alarm a, PATHCRAWLER may confirm it as a bug when it finds an

input state and an error path leading to the bug. PATHCRAWLER may also prove that

the alarm is safe when all-paths test generation on p ′ terminates without activating

the corresponding threat. When all-paths test generation on p ′ does not terminate,

or when incomplete test coverage criterion was used (e.g. k-path), no alarm is clas-

sified safe. Finally, all alarms that are not classified as bug or safe remain unknown.

For the running example, without slicing (cf Sec. 2.2.1), test generation on the

original program with error branches takes around 25 seconds. When the program

is sliced with respect to all alarms (cf Sec. 2.2.2), test generation finishes in around 7

seconds. For each of the five programs sliced with respect to one alarm (cf Sec. 2.2.3),

test generation takes between 1 and 6 seconds. The complete time needed for the five

slices is around 13 seconds. The value analysis and slicing steps are much faster than

test generation (much less than 1 sec. for this example). In all cases, test generation

concludes that among the five alarms, there is one bug and four false alarms.

3 Conclusion

In this demonstration paper, we presented the SANTE tool combining value analysis,

program slicing and structural testing for C program debugging. The method was

illustrated on a running example. Future work includes proving the soundness of

the method, studying other ways to combine different analyses and transformations,

and experiments on more examples.

Acknowledgments. The authors thank the members of the PathCrawler and Frama-C teams

for providing the tools and support. Special thanks to Loïc Correnson and Bruno Marre for

their helpful advice and fruitful suggestions.

References

1. Chebaro, O., Kosmatov, N., Giorgetti, A., Julliand, J.: Combining static analysis and test

generation for C program debugging. In: TAP 2010. 652–666
2. Weiser, M.: Program slicing. In: ICSE 1981. 439–449
3. Frama-C: Framework for static analysis of C programs (2007–2011)

http://www.frama-c.com/.
4. Williams, N., Marre, B., Mouy, P., Roger, M.: PathCrawler: automatic generation of path tests

by combining static and dynamic analysis. In: EDCC 2005. 281–292
5. Botella, B., Delahaye, M., Hong-Tuan-Ha, S., Kosmatov, N., Mouy, P., Roger, M., Williams,

N.: Automating structural testing of C programs: Experience with PathCrawler. In: AST

2009. 70–78
6. Kosmatov, N.: Online version of the PathCrawler test generation tool (2010–2011)

http://pathcrawler-online.com/.
7. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In: ESEC/FSE

2005. 263–272

