
PathCrawler:

Automatic Generation of Path Tests

by Combining Static and Dynamic Analysis

Nicky Williams, Bruno Marre, Patricia Mouy, and Muriel Roger

CEA/Saclay, DRT/LIST/SOL/LSL,91191 Gif sur Yvette, France,
{Nicky.Williams, Bruno.Marre, Patricia.Mouy, Muriel Roger}@cea.fr

Abstract. We present the PathCrawler prototype tool for the auto-
matic generation of test-cases satisfying the rigorous all-paths criterion,
with a user-defined limit on the number of loop iterations in the covered
paths. The prototype treats C code and we illustrate the test-case gen-
eration process on a representative example of a C function containing
data-structures of variable dimensions, loops with variable numbers of
iterations and many infeasible paths. PathCrawler is based on a novel
combination of code instrumentation and constraint solving which makes
it both efficient and open to extension. It suffers neither from the ap-
proximations and complexity of static analysis, nor from the number of
executions demanded by the use of heuristic algorithms in function min-
imisation and the possibility that they fail to find a solution. We believe
that it demonstrates the feasibility of rigorous and systematic testing of
sequential programs coded in imperative languages.

1 Introduction

Rigorous testing of delivered software, by its implementers or by external cer-
tifiers, is increasingly demanded, along with some quantification of the degree
of confidence in the software implied by the test results. The reasons for this
include the increase in the deployment of embedded software systems and the
re-use of off-the-shelf components. This sort of testing cannot be based on a
restricted set of hand-crafted test objectives or use-cases, which may have to be
manually updated if the software requirements change. Testing must be made as
automatic as possible, with automatic generation of a large number of test-cases
according to a well-justified selection criterion.

2 Related Work

There has been much research on the automatic generation of structural test-
cases but most of it addresses the Test Data Generation Problem (TDGP) of
finding data to cover a test objective in the form of given node, branch or path
of the control flow graph.

Static approaches to test-case generation [2, 3, 15] typically select a path from
the control flow graph covering the test objective, derive the path predicate as a
set of constraints on the input values and then solve these constraints to find a
test-case which activates the path. In theory, symbolic execution can be used to
construct the path predicate. However, in practice symbolic execution encounters
problems in the detection of infeasible paths (notably in the case of loops with
a variable number of iterations), the treatment of aliases and the complexity of
the formulae which are gradually built up.

Dynamic approaches [1, 5, 9] avoid the problems of symbolic execution by
dispensing with the path predicate and using general heuristic function minimi-
sation techniques to modify the input data so that the test objective is covered.
The first set of input data is arbitrarily selected and the program is instrumented
so as to indicate the branches taken and evaluate their “distance” from the test
objective. Function minimisation must reduce this distance to zero. The disad-
vantages of these techniques are that they may need a great many executions
before a test-case is found, they may fail to find a test-case even when one exists
and they do not terminate if the desired path is actually infeasible.

We address a different problem to that of most previous work, and adopt
a different solution. We believe that rigorous testing is possible if sufficiently
automated and we therefore base our work on a rigorous test criterion: 100%
coverage of feasible execution paths. The TDGP is not the best formulation of
this problem. We do not need to construct the control flow graph, enumerate all

Fig. 1. Source code of the function Merge

void Merge (int t1[],int t2[],int t3[],int l1,int l2){ (1

int i = 0; int j = 0; int k = 0; (2

while (i < l1 && j < l2) { (3

if (t1[i] < t2[j]) { (4

t3[k] = t1[i]; (5

i++; } (6

else { (7

t3[k] = t2[j]; (8

j++; } (9

k++; } (10

while (i < l1) { (11

t3[k] = t1[i]; (12

i++; (13

k++; } (14

while (j < l2) { (15

t3[k] = t2[j]; (16

j++; (17

k++; } (18

} (19

the paths in the graph, many of which will be infeasible, and search for a test
for each. Instead, we iteratively cover “on the fly” the whole input space of the
program under test. This is an extension of the idea sketched out in [14].

Like the dynamic approaches to test data generation, PathCrawler is based
on dynamic analysis, but instead of heuristic function minimisation, it uses con-
straint logic programming to solve a (partial) path predicate and find the next
test-case, as in the approaches based on static analysis. It suffers neither from
the approximations and complexity of static analysis, nor from the number of
executions demanded by heuristic algorithms used in function minimisation and
the possibility that they fail to find a solution.

3 Our Approach

Our approach is applicable to all sequential programs coded in an imperative
language and the prototype has been implemented for C. This paper extends [8],
notably by illustrating the test generation process step-by-step on an example:
the C function Merge, whose source code is shown in Fig. 1. Merge takes as input
two arrays, t1 and t2, of ordered integers and their effective lengths, l1 and l2,
and outputs, in array t3, all their elements, in order. Merge is representative
of many of the problems posed by C code: it contains arrays of variable length,
loops with a variable number of iterations and many infeasible paths and only
produces the correct result if the input arrays are sorted. In this section we give
an overview of our approach and in the following sections we describe its principal
stages: Instrumentation, Substitution and Constraint Solving. We then describe
the results of applying PathCrawler to the function Merge, before concluding
with a discussion of further work.

Our approach (see Fig. 2) starts with the instrumentation of the source code
so as to recover the symbolic execution path each time that the program under

Fig. 2. Our approach

e x e c u t i o n

s u b s t i t u t i o n

d e f i n i t i o n d o m a i n o f p r o g r a m

s o u r c e c o d e

i n s t r u m e n t e d s o u r c e
c o d e

i n s t r u m e n t a t i o n
c o m p i l a t i o n

i n j e c t i o n o f i n p u t v a l u e s

e x e c u t i o n p a t h
.

p a t h p r e d i c a t e s
o f p r e v i o u s t e s t s

c o n j u n c t i o n

p a t h p r e d i c a t e
.

i n s t r u m e n t e d o b j e c t

d o m a i n n o t y e t c o v e r e d

d i f f e r e n c e

c o n s t r a i n t s o l v i n g

i n p u t v a l u e s f o r n e x t t e s t

test is executed. The instrumented code is executed for the first time using a
“test-case” which can be any set of inputs from the domain of legitimate values.
The symbolic path which we recover is transformed into a path predicate which
defines the “domain” of the path covered by the first test-case, i.e. the set of input
values which cause the same path to be followed. The next test-case is found by
solving the constraints defining the legitimate input values outside the domain
of the path which is already covered. The instrumented code is then executed
on this test-case and so on, until all the feasible paths have been covered.

Loops with a variable number of iterations, such as the three loops in our
example function Merge, can cause a combinatorial explosion in the number
of execution paths. The all-paths criterion is therefore often relaxed to impose
coverage of only those paths containing numbers of iterations within a user-
defined limit, k. In our example, k is set to 2 so only the feasible paths containing
combinations of 0, 1 or 2 loop iterations are covered. In order to implement this
k-path criterion, we have extended the instrumentation of the source code so as
to annotate the conditions which determine loop entry or exit. Our constraint
solving strategy uses these annotations.

4 Instrumentation

The instrumentation stage is an automatic transformation of the source code
so as to print out the symbolic execution path, i.e. a sequence of assignments
and satisfied conditions on C variables or access paths. A trace instruction is
therefore inserted after each assignment and each branch of the source code.
The instrumentation is implemented using the CIL library [12]. Certain source-
code statements are decomposed, notably multiple conditions which reinforces
our test criterion, bringing it close to all-paths combined with MC/DC. Note
that in the C language, variable values may be referenced using “data access
paths” involving not only the operators to access array elements or structure
fields, but also pointer de-references. In our trace instructions, all data access
paths are rewritten, in a purely syntactic transformation, to a canonical form,
so as to simplify the substitution stage.

5 Substitution

A path predicate is a conjunction of constraints expressed in terms of the values
(at input) of the input variables. However, the symbolic conditions output by
the instrumentation of the conditional statements in the source code may be
expressed in terms of local variables (or intermediate values of input variables).
The substitution stage of our approach carries out the projection of these con-
ditions onto the values of the inputs. The sequence of statements output by the
execution of the instrumented program is traversed and each assignment is used
to update a “memory map” which stores the current symbolic value of local
variables in terms of the input values. When a condition is encountered, all oc-
currences of local variables are replaced by their current symbolic values. The

Fig. 3. Input domains

resulting list of conditions is the path predicate. Because we analyse a single,
unrolled, path, we do not need to use the SSA form used in [2] and can treat
aliases (two or more ways of denoting the same memory location) with relative
ease.

6 Test Selection and Constraint Solving

The first test-case t1 is generated from a selection domain SD0 which is the input
domain, ID, of the program under test. ¿From the execution of t1, we derive
the corresponding path predicate PP1. In order to cover a new path, we have to
generate test inputs from the difference, SD1, of SD0 and the domain of PP1

(see Fig. 3). If SD1 is empty, this means that there are no more paths to cover.
Otherwise, we can generate a new test-case t2, from SD1, which exercises a new
path whose predicate is PP2. This process is repeated until an empty selection
domain SDn is reached, in which case we have covered every feasible path of the
program under test.

Each path predicate PPi is the ordered conjunction of the number pi of
successive conditions Ci,j encountered along the corresponding path:

PPi = Ci,1 ∧ . . . ∧ Ci,pi (1)

The negation of PPi is just the disjunction of all the prefixes of PPi with the
last condition negated :

¬ PPi = ¬ Ci,1 ∨

∨

m=2.....pi

(Ci,1 ∧ . . . ∧ Ci,m−1 ∧ ¬ Ci,m) (2)

Note that each term of this disjunction is a conjunction of conditions cor-
responding to a (possibly infeasible) path prefix which is unexplored at the ith
step of our selection strategy. To find a solution in each selection domain SDi, we
choose to solve the longest feasible conjunction in ¬ PPi, which we call MaxCi.
If all the conjunctions in ¬ PPi are infeasible, the longest unsolved feasible con-
junction in ¬ PPi−1, MaxCi−1, is tried, and so on. Our strategy corresponds in

this sense to a depth-first construction of the tree of feasible execution paths, as
we will illustrate below on our example function.

To respect the k-paths criterion, the definition of MaxCi must be modified
to take into account the annotations of conditions from the heads of loops with a
variable number of iterations. If the negation of a condition would result in loop
re-entry after k or more iterations, then it is not explored. This way, we ensure
that we never generate any new path predicate prefixes containing too many
loop iterations. However, we cannot prevent constraint solving of some path
predicate prefix occasionally resulting in a “superfluous” test, i.e. one covering
a path which - after the prefix - executes more than k iterations of a loop.

Test selection and constraint solving are implemented in the Eclipse con-
straint logic programming environment [17]. Note that solving non-linear con-
straints is decidable only for data types with finite domains, such as integers.
However, current research [10, 15] holds the promise of decidable and precise
constraint solving for floating-point numbers too. Solving constraints over finite
domains is NP-complete in the worst case but we base our work on heuristics
developed for test-case generation problems [3, 7] which display low complexity
in practice. In the case of data-structures whose size may not be the same in
all the test cases, constrained variables representing the elements of the data-
structure are defined only as needed. Our “labelling” heuristic (used to generate
and test values after constraint propagation) is to choose dimension values as low
as possible. This has the advantage that we are sure to generate tests for empty
data-structures (where they are allowed), whose treatment is often a source of
bugs. Moreover, as there is often a link between data-structure dimensions and
the number of loop iterations, smaller data-structures can result in fewer super-
fluous test cases for the k-path criterion. For variables other than dimensions,
labelling uses a random generator which starts by generating values in the me-
dian third of the variable’s domain after constraint propagation. If all these
values have been tried without success, randomly generated values outside the
median third are tried.

An advantage of our test generation strategy is that we only analyse feasible
path predicates. Of course during the search for MaxCi, we may construct other
path predicate prefixes which turn out to be unsatisfiable, but this is always due
to the negation of the last condition. This kind of unsatisfiability is easier to
detect than that due to the structural construction of arbitrary path predicates.
Moreover, when a path predicate prefix has no solution, the strategy does not
construct or explore any path predicates starting with this prefix.

7 Example

Now let us follow step by step what happens when we run the PathCrawler on
our example. The first step is to define the input domain, ID, of Merge. Note
that the formal parameters of a C function may not all be input parameters and
that some global variables may also be input parameters. The parameters may
be accessed via pointers or belong to structured data types of possibly unknown

Fig. 4. Merge domains and preconditions

dim(t1) ∈ 0 . . . 10000
l1 ∈ 0 . . . 10000
forall i ∈ 0. . . dim(t1). t1[i] ∈ -100 . . . 100
dim(t1) = l1
forall i ∈ 1. . .l1. t1[i] ≥ t1[i - 1]
and similarly for t2

dimensions. In our example, t3 is not an input parameter and the sizes of t1 and
t2 are variable. PathCrawler can treat functions with pointers and structured
data, including arrays with variable dimensions, as input parameters. However,
as the input parameters of a C function cannot be automatically identified with-
out static analysis, the user is currently asked to pick out the input parameters
from the list of all the scalar formal parameters and global variables visible to
the function, and of all the components (elements, fields, de-referenced values,)
of structured formal parameters and visible global variables, or those in the form
of pointers. The user is also asked to replace the default domain (based on its
declared C type) of each input parameter by a smaller interval, when applicable.
Similarly, the user must give the upper limit of any variable dimensions of arrays
containing input parameters. Finally the user must define any other input pa-
rameter dependencies (precondition). The forall operator, which iterates over
all elements of an array, can currently be used in the precondition definitions
and we are studying the use of a richer language to specify the precondition. In
our example (see Fig. 4), the value of l1 (resp. l2) must be less than or equal
to the length of t1 (resp. t2) (and in fact, we set them as equal). Furthermore,
t1 and t2 must be ordered.

Fig. 5. Selection strategy

Table 1. Tests generated for Merge

no. l1 l2 t1[0] t1[1] t1[2] t2[0] t2[1] t2[2] path covered (with selected prefix underlined)

1 0 0 -3a,-11,-15
2 0 1 -3 -3a,-11, 15,-15

3 0 2 -52 30 -3a,-11, 15, 15,-15

4 1 0 -5 3a,-3b, 11,-11,-15
5 2 0 -41 -8 3a,-3b, 11, 11,-11,-15

6 1 1 -17 16 3a, 3b, 4,-3a,-11, 15,-15

7 1 2 24 67 88 3a, 3b, 4,-3a,-11, 15, 15,-15

8 2 1 -67 14 -22 3a, 3b, 4, 3a, 3b,-4, 3a,-3b, 11,-11,-15

9 3 1 -77 -27 0 -61 3a, 3b, 4, 3a, 3b,-4, 3a,-3b, 11, 11,-11,-15

10 2 1 -1 23 46 3a, 3b, 4, 3a, 3b, 4,-3a,-11, 15,-15

11 2 2 -68 -37 -14 29 3a, 3b, 4, 3a, 3b, 4,-3a,-11, 15, 15,-15

12 3 1 -69 -36 28 -5 3a, 3b, 4, 3a, 3b, 4, 3a, 3b,-4, 3a,-3b, 11,-11,-15

13 1 1 -23 -50 3a, 3b,-4, 3a,-3b, 11,-11,-15

14 2 1 41 73 9 3a, 3b,-4, 3a,-3b, 11, 11,-11,-15

15 1 2 -30 -69 24 3a, 3b,-4, 3a, 3b, 4,-3a,-11, 15,-15

16 1 3 -30 -73 -13 15 3a, 3b,-4, 3a, 3b, 4,-3a,-11, 15, 15,-15

17 2 2 31 56 -17 64 3a, 3b,-4, 3a, 3b, 4, 3a, 3b, 4,-3a,-11, 15,-15

18 1 2 27 -54 -26 3a, 3b,-4, 3a, 3b,-4, 3a,-3b, 11,-11,-15

19 2 2 -52 -26 -79 -65 3a, 3b,-4, 3a, 3b,-4, 3a,-3b, 11, 11,-11,-15

In the first test-case of our example, generated from the domains and con-
straints of Fig. 4, the sizes of t1 and t2 are set to zero. This test-case is shown in
Table 1, in which the arcs of the execution path are denoted by the line-number
of the corresponding condition in the source code (in Fig. 1), preceded by a mi-
nus sign if the condition is not satisfied and, in the case of composite conditions,
followed by a letter indicating the sub-condition concerned. The predicate PP1

of the path covered by the first test encounters the following conditions (also
numbered according to their origin in the source code), shown in Fig. 5:

C1,1 = ¬ Cond3a : ¬ 0 < l1 (exit 1st loop after 0 iterations)

C1,2 = ¬ Cond11 : ¬ 0 < l1 (exit 2nd loop after 0 iterations)

C1,3 = ¬ Cond15 : ¬ 0 < l2 (exit 3rd loop after 0 iterations)

Solution of MaxC2 = ¬ Cond3a∧¬ Cond11∧Cond15 generates the second
test-case shown in Table 1, in which there is one iteration of the third loop. The
third test, covering two iterations of the third loop, is generated in a similar way.
With no limit on loop iterations, MaxC4 would be:

C3,1 = ¬ Cond3a : ¬ 0 < l1 (exit 1st loop after 0 iterations)
C3,2 = ¬ Cond11 : ¬ 0 < l1 (exit 2nd loop after 0 iterations)
C3,3 = Cond15 : 0 < l2 (entry 1st iteration of 3rd loop)
C3,4 = Cond15 : 1 < l2 (entry 2nd iteration of 3rd loop)

¬ C3,5 = Cond15 : 2 < l2 (entry 3rd iteration of 3rd loop)

This is where the modification of our strategy to limit loop iterations takes
effect: this conjunction is not solved because it would entail more than 2 itera-
tions of the third loop. Our strategy thus backtracks to the lowest unexplored
branch of Fig. 5 and constructs the path prefix ¬ Cond3a ∧ Cond11. However,
this is unsatisfiable, so MaxC4 is in fact Cond3a.

Of the 19 tests generated in our example, only the 12th and 17th are super-
fluous (contain more than 2 iterations of the same loop) and we only need to
discover the infeasibility of 25 path predicate prefixes. In comparison, Merge’s
control-flow graph contains 109 infeasible paths if k is set to 2.

To test the efficiency and stability of our implementation, we ran our proto-
type ten times on Merge with k set to 5 and maximal domains for the elements
of t1 and t2. For this value of k, the control-flow graph contains 4536 paths, of
which 321 are feasible. In each run, 337 tests were generated and 317 infeasible
path predicate prefixes found in order to eliminate the 4215 infeasible paths,
i.e. 654 predicate prefixes were generated and solved or rejected. The CPU exe-
cution time on a 2GHz PC running under Linux varied between 0.75 and 0.81
seconds, with an average of 0.785. In conclusion, all k-paths were tested (and 20
superfluous tests generated) in under 1 second and our random labelling heuris-
tic did not cause much variation in execution time. For k = 10, 20993 tests are
generated and 15357 infeasible paths eliminated in around 116 seconds.

8 Other Examples

We have also tried our prototype on some well-known examples from the testing
literature: the programs TriType, Bsort and Sample (see Appendix). Given the
lengths of the sides of a triangle, Tritype carries out a series of tests on them to
classify the triangle. It has no loops and only 14 execution paths but is interesting
because the path predicates include simple arithmetical expressions and not just
inequalities as in the other examples. Bsort is a bubble sort containing two nested
loops, one iterating over all the elements of the array to be sorted and the other
over the elements after the current one. This example demonstrates the limits of
our current implementation of the k-paths strategy : the number of superfluous
tests grows exponentially with k due to PathCrawler’s attempts to find paths
with k executions of both loops. The best way to limit the number of paths in
this case is therefore by reducing the length of the array to be sorted. Sample
compares the contents of two arrays to a reference value in two successive loops,
each with a fixed number of iterations of the length of the array. For array lengths
n and m, the number of paths is 1+ (2n -1) * 2m. The k-path strategy cannot be
used for this example because the number of iterations is fixed but the number
of paths can be kept reasonable by limiting n and m, which is justified by the

Table 2. Results for other examples

—

program k
array
dimn.

tests
infeasible
prefixes

mean exec.
time

min exec.
time

max exec.
time

TriType - - 14 3 0.01 0.01 0.02
Bsort 10000 0 - 5 153 349 1.16 1.14 1.17
Sample - 4 241 0 0.27 0.22 0.29

total lack of dependence between successive loop iterations. The number of tests,
number of infeasible prefixes, mean execution time in seconds and variation in
the execution times over 10 runs are shown in Table 2

9 Further Work

Our first priority is to apply PathCrawler to a wide range of larger examples.
However, our results so far suggest that our approach is efficient enough to scale
up to the treatment of larger programs providing that we limit the combinato-
rial explosion of the number of execution paths. We have shown how we easily
adapted our test selection strategy to limit the number of iterations of certain
loops. Our current topics of investigation [11] include strategies to avoid test-
ing all the paths in each call to another function. Our method is open to such
modulations in the test strategy. Firstly, constraints other than those from a
path predicate can be taken into account, as is already done for the treatment
of the precondition on the input values of the program under test. Integration
test scenarios could be used in the same way. Secondly, information collected
during execution of the program under test can also influence test selection, as
illustrated by the use of annotations of loop-head conditions to implement the k-
path criterion. By annotating the conditions in called functions, the exploration
of different paths in these functions could be restricted.

However, the effectiveness of our test generation strategy is limited by the
selection of a single test for each path. It could be easily modified to select tests
at the limits of the path domain boundaries [4], where bugs are often found.
The chances of detecting coincidental correctness would be improved if we also
extended our random generation of variable values to the random generation of
several tests for each path, in a similar way to statistical structural testing [16,
3].

Finally, the applicability of PathCrawler depends on a high degree of automa-
tion of the test process. In the current prototype, the oracle must be hand-coded
but by taking certain forms of post-condition on the C variables into account,
we could automatically generate the oracle as in [6, 13].

References

1. [1] M.J. Gallagher and V.L. Narasimhan, ADTEST : A Test Data Generation Suite
for Ada Software Systems, IEEE Transactions on Software Engineering, Vol. 23, No.
8, August 1997

2. [2] A. Gotlieb, B. Botella and M. Reuher, A CLP Framework for Computing Struc-
tural Test Data, CL2000, LNAI 1891, Springer Verlag, July 2000, pp 399-413

3. [3] S-D Gouraud, A. Denise, M-C. Gaudel and B. Marre, A New Way of Automating
Statistical Testing Methods, ASE 2001, Coronado Island, California, November 2001

4. [4] B. Jeng and E.J. Weyuker, A Simplified Domain-Testing Strategy, ACM Transac-
tions on Software Engineering and Methodology, Vol. 3, No. 3, July 1994, pp 254-270

5. [5] B. Korel, Automated Software Test Data Generation, IEEE Transactions on
Software Engineering, Vol. 16, No. 8, August 1990

6. [6] G.T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D.R. Cok, How the Design
of JML Accommodates Both Runtime Assertion Checking and Formal Verification,
In Formal Methods for Components and Objects, LNCS Vol. 2852, Springer Verlag,
Berlin, 2003, pp 262-284

7. [7] B. Marre and A. Arnould, Test sequences generation from Lustre descriptions:
GATeL, ASE 2000, Grenoble, pp 229–237, Sep. 2000

8. [8] B. Marre, P. Mouy and N. Williams, On-the-Fly Generation of K-Path Tests
for C Functions, 19th IEEE Intnl. Conf. on Automated Software Engineering (ASE
2004), September 2004, Linz, Austria.

9. [9] C. Michael and G. McGraw, Automated Software Test Data Generation for
Complex Programs, ASE, Oct 1998, Honolulu

10. [10] C. Michel, M. Rueher and Y. Lebbah, Solving Constraints over Floating-Point
Numbers, CP’2001, LNCS vol. 2239, pp 524-538, Springer Verlag, Berlin, 2001

11. [11] P. Mouy, Vers une méthode de génération de tests bôıte grise “à la volée”,
Approches Formelles dans l’Assistance au Développement de Logiciels (AFADL’04),
June 2004, Besançon, France

12. [12] G.C. Necula, S. McPeak, S.P. Rahul and W. Weimer, CIL: Intermediate Lan-
guage and Tools for Analysis and Transformation of C Programs, Proc. Conference
on Compiler Construction, 2002.

13. [13] M. Obayashi, H. Kubota, S.P. McCarron and L. Mallet, The Assertion Based
Testing Tool for OOP: ADL2, In Proc. ICSE’98, Kyoto, Japan, 1998

14. [14] R.E. Prather and J.P. Myers, The Path Prefix Testing Strategy, IEEE Trans-
actions on Software Engineering, Vol. 13, No. 7, July 1987

15. [15] N.T. Sy and Y. Deville, Consistency Techniques for Interprocedural Test Data
Generation, ESEC/FSE’03, September 1-5, 2003, Helsinki, Finland

16. [16] P.Thevenod-Fosse and H.Waeselynck, Software statistical testing based on
structural and functional criteria, 11th International Software Quality Week, San
Francisco (USA), 26-29 May 1998

17. [17] M. Wallace, S. Novello and J. Schimpf, ECLiPSe: A Platform for Constraint
Logic Programming, IC-Parc, Imperial College, London, August 1997

10 Appendix

int tritype(int i, int j, int k){
int trityp;
if ((i == 0) || (j == 0) || (k == 0)) trityp = 4;

else {
trityp = 0;

if (i == j) trityp = trityp + 1;
if (i == k) trityp = trityp + 2;

if (j == k) trityp = trityp + 3;
if (trityp == 0){
if ((i+j <= k) || (j+k <= i) || (i+k <= j)) trityp = 4;

else trityp = 1;
}

else if (trityp > 3) trityp = 3;
else if ((trityp == 1) && (i+j > k)) trityp = 2;
else if ((trityp == 2) && (i+k > j)) trityp = 2;

else if ((trityp == 3) && (j+k > i)) trityp = 2;
else trityp = 4;

}
return trityp;

}

void bsort (int * tableau, int l)

{
int i, temp, nb;

char fini;
fini = 0;
nb = 0;

while (!fini && (nb < l-1)){
fini = 1;

for (i=0 ; i<l-1 ; i++)
if (tableau[i] < tableau[i+1]){

fini = 0;

temp = tableau[i];
tableau[i] = tableau[i + 1];

tableau[i + 1] = temp;
}

nb++;
}

}

int sample(int a[4], int b[4], int target)
{

int i, fa, fb;
i=0;
fa=0;

fb=0;
while(i<=3){

if(a[i]==target) fa=1;
++i;

};

if(fa==1){
i=0;

fb=1;
while(i<=3){

if(b[i]!=target) fb=0;
++i;

}

}
if(fb==1) return 0;

else return 1;
}

