© 2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Generation of all-paths unit test with function calls

Patricia Mouy, Bruno Marre, Nicky Williams
CEA/LIST, LSL, 91191 Gif Sur Yvette Cx, France
firstname.lasthame@cea.fr

Pascale Le Gall
Ecole Centrale Paris, Laboratoire MAS
Grande voie des Vignes, 92295 Chatenay Malabry, France
pascale.legall@epigenomique.genopole.fr

Abstract successful test run depends on the coverage criteria and on
the oracle used to evaluate the test results. Even assuming a
Structural testing is usually restricted to unit tests and perfect oracle, 100% coverage of reachable instructions or
based on some clear definition of source code coverage. Inbranches only guarantees the detection of errors which are
particular, the all-paths criterion, which requires at lIsia always provoked, whatever the context of execution of the
one test-case per feasible path of the function under test,instruction or branch. However, in the case of full coverage
is recognised as offering a high level of software reliabil- of feasible execution paths, all instructions and branehes
ity. This paper deals with the difficulties of using strueur tested in all possible execution contexts.

unit testing to test functions which call other functions. T Even for unit testing, full path coverage is often assumed
limit the resulting combinatorial explosion in the_ numbér o _ to be an unrealistic goal because of the number of tests re-
paths, we choose to abstract the called functions by their qired. This is particularly true when it is not automated.
specification. We incorporate the functional information o \\e have developed the PathCrawler tool which automati-
the called functions within the structural information dret cally generates test inputs for 100% coverage of feasible
function under test, given as a control flow graph (CFG). paths for unit testing of C source code. With an automatic
This representation combining functional and structumld oracle, PathCrawler makes fully automatic unit testing-pos
scriptions may be viewed as an extension of the classic CFGsiple for many C functions. For the treatment of loops with
and allows us to characterise test selection criteria eAsur g yariable number of iterations, the all-path criterion can
ing the coverage of the source code of the function underpe restricted to a variant : thepath criterion (also known
test. R] o as ct-coverage [BM93]) where the number of iterations in
Two new criteria will be proposed. The first criterion loops is bounded by a given parameter However, path
corresponds to the coverage of all the paths of this new rep-coyerage must be carefully defined when the function un-
resentation, including all the paths arising from the func- ger test calls other functions. Up until now, PathCrawler
tional description of the called functions. The second cri- pa5 inlined the source code of called functions, risking a
terion covers all the feasible paths of the function under combinatorial explosion in the number of paths and an un-
test only. We describe how we automate test-data generanecessarily large number of tests if we consider that the all

tion with respect to such grey-box (combinations of black- feasible-paths criterion only requires coverage of alhpat
box and white-box) test selection strategies, and we applyin the function under test itself.

the resulting extension of our PathCrawler tool to examples

coded in the C language. For function calls, two methods are usually used. The

inlining method consists of including the source code of the
called functions in the source code of the function under
) test so that the test criterion is applied to it as well. This
1 Introduction method amplifies the problem of the combinatorial explo-
sion of paths by combining the number of paths of the called
Structural testing is popular because the coverage of thefunctions with the number of paths of the function under
source code can be clearly defined and quantified. Howevertest. The second method consists of replacing the called
the confidence in the code which can be inferred from a functions with specialised modules, called stubs, builhma

© N OAWN

©

ually in an ad-hoc way and often incomplete. In conclusion,

number of paths in the calling function. This is because

the usual ways to treat function calls cannot be used for theeach path in the calling function is duplicated for each pos-
automatic generation of unit tests. In this paper, we ad- sible number of iterations of the loop in the called function

dress this limitation of structural testing. Our objectige

to ensure the preservation of full coverage of paths in the

calling function, while limiting the combinatorial explios
of tested paths.

Example 1.1 This example serves us as a motivating ex-
ample and is inspired by a technique commonly used in

i.e. for each element of the constant artay

In this example, in each duplicated path of the calling
functionappl y _f , a different element of the approximated
function, f, is applied but the calculation does not othepwi
change. In other words, the duplicated paths exercisediffe
ent constant data values and not different algorithms.ign th
case, the real differences in the algorithm correspondeo th

embedded software for the approximation of a continuous yi¢arent paths in the calling functioappl y_f following

function (linear approximation). It is taken from a real-
world industrial application, typical of critical embedde

the calls taget _i nt er (2 paths following the first call and
3 paths following the second call). There is also an execu-

systems code. Consider the following example of sourcey, hath without a function call. Only these paths need to

code. The functiomappl y_f is computing an approxima-
tion of a functionf and contains two function calls of the
functionget _i nt er . More precisely, the calling function
appl yf contains 6 different execution paths, 5 of which
contain a call to the functioget _i nt er.

const int n=9;
const int t[9]={-15,-5,-3,-1,0,1, 3,5, 15};
const int f[9]=(5,4,3,2,1,2,3,4,5};

/* CALLED FUNCTION returns -1,
int get_inter(int val){
int r; int j;
if (val <t[0])
r = -2;
el se
if (val>=t[n-1])
r =-1;

-2 or value in [0,n-2]*/

el se

for(j=0;j<n-1;j++){
if ((val>=t[j])&&(val <t[j+1])){
r=ij;
br eak; }

return (r);

/* CALLI NG FUNCTI ON =/

int apply_f(int x, int node){
int i; int ret;

if (node)

if 1((x>=0)&&(x<5))

ret = -300;

el se {

i = get_inter(x); /*FUNCTION CALL (x:[0,5[)*/
if (i<0)
ret = -100;/+*DEAD CODE : the called function
returns 4,5 or 6 with the previous calling context =*/
el se
ret = f[i] » 2; }
el se {
i = get_inter(x);
if (i<0)

/ *FUNCTI ON CALL (x:int)=/

ret = -100;
el se {
if (i >n-1)

ret = -200;/*DEAD CODE : the called function
cannot return value > n-1 */

el se

ret =f[i];}

return ret;

}

Although it is simple, the source code of the called func-

tionget _i nt er results in a combinatorial explosionin the

be covered for the coverage of all the feasible paths of the
calling functionget _i nt er.

Our method is based on a formal specification of the
called function. We assume that either the source code of
the called function is available and has already been in-
dependently validated or else the called function is Iprar
or off-the-shelf software component (COTS) for which the
source code is not available but there is a detailed descrip-
tion of the functionality and restrictions on usage. We be-
lieve that in such cases, in a context of automated unit test-
ing, users are prepared to formalise the specificationsof th
called functions. Either the called functions must in any
case be independently tested or proved, in which case for-
mal specifications would be very useful anyway, or else they
are documented in a form which is easy to transcribe to
formal specifications. We propose a specification language
which uses the same function names and types as the C code
and structures the specifications into pre/post condititins
is similar to the usual languages used for defining assertion
in source code (such as JML).

This work is an example of grey-box test selection strat-
egy that advantageously combines white box (structural)
and black-box (functional) strategies in order to achiave a
tomation of unit testing.

In Section 2, we discuss related work and explain our
unit test method for PathCrawler without function calls. In
the next section, we present our novel treatment of function
calls. Next, we explain the two criteria defined for unit test
ing with function calls. In Section 5, we present our first
results obtained with the prototype implementation and we
discuss this approach. Finally, we conclude with a brief
wrap-up and some perspectives.

2 PathCrawler overview and Related works

Our method [WMMO03], [WMMRO05], [WMMO04]
named PathCrawler is a “path testing” method for sequen-
tial programs coded in an imperative language. Our test-
data generator prototype, also called PathCrawler, treats

ANSI C programs. used in [MAOQQ].

Like the dynamic approaches [FK96], [Kor96], [GN97], One major difficulty in program analysis is the han-
[GMS99] and [MM98] to test data generation, our method dling of alias relations. This problem is simplified when
is based on dynamic analysis. Most dynamic approaches-ﬂnaWSing one unrolled path at a time as is done in all these
use heuristic function minimisation. The iterative relax- adaptive methods. A common restriction is to suppose that
ation method in [GMS99] uses a linear approximation of there is no alias between fields of data-structure inputs un-
the path predicate but requires many executions of the funcJess explicitly specified by the user. Aliases then pose the
tion to derive an input for a given path. We use constraint following two problems : 1) when translating branch condi-
logic programming (CLP) to solve a partial path predicate. tions into constraints on input values, intermediate assig
In this way, our approach resembles [GBR0O] and [SD01], ments which use a different alias must be recognised 2) cre-
which are also based on constraint resolution. However, weating a test-case which exercises a branch condition which
suffer neither from the complexity of their purely symbolic c¢an only be satisfied in the case of an alias between differ-

approaches, nor from the number of executions demandec®nt fields of data-structure inputs. In all the tools present
by the dynamic approaches. here, memory configuration and alias relations are handled

by an abstract memory-map. The ability to recognise pos-
sible alias relations (and cover all paths) relies on theipre

sion of the memory-map and the extent to which alias rela-
tions are precisely handled by the constraint solver. Due to
their linear constraint solver, DART and CUTE encounter

Unlike all the preceding approaches, PathCrawler aims
to cover all execution paths and not a particular path.
Indeed, PathCrawler was one of the first methods (af-
ter [PM87]) to be based on the modification of a
predicate of a previously covered path. These meth-

ods now include CUTE[SMAO5], DART[GKS05] and difficulties in the treatment of aliases. In these tools, whe
EXE[CGP+06], called “concolic” b,ecause they are based constraints with symbolic values cannot be handled by the

on a collaboration of concrete instrumented executions and.50|ver’ thetsymtl)ollc VVaVIETS f\hr.e repla(;ed by thte corlrespond-
symbolic execution analysis. For the instrumentation,step Ny concrete values.l_ i It('e IS tuhse ot concrete ;/a uet§ m?y
all the tools use the static analysis tool CIL [Lan06]. Each compensate solver imitations, there IS no way 1o estimale

path predicate built from an instrumented execution is thentr}%;oEmpleten(ejszpf T%SSZ_? pr(iaCheS' Thetcgr:stra}lgi solve
analysed to derive data inputs exercising an uncovered’ uses a dedicate -Solverconnectedto a "bit vec-

path in an attempt to cover all feasible execution paths.tors and arrays” decision procedure (STP)[GD07] in which

PathCrawler, DART and CUTE perform a depth-first ex- memory-map and alias relations can be complgtely repre-
ploration of the CFG of the function, while EXE performs a sented. PathCrawler's memory-mapis less precise and can-

kind of breadth-first exploration based on a system of forked hot treat aliases_ resulting fro”.‘ pointer arithmetic on rdco
executions at each branching node of the CFG. types 6t ruct in C), type unions or casts between data-

,) . structures.
While PathCrawler IS a structural test-data ger_1erat|on The subject of this paper is the extension of PathCrawler
tool (for the all-paths criterion), these other concoliolto

d bua-findi | lori . _to treat function calls. As in our initial version of
are pr_esente as bug-finding tools, exploring e_x_eCUt'onPathCrawler, CUTE uses an inlining approach for function
paths in ord.er to exhibit run-time errors (e.g. d_'v'd? by calls while this point is not addressed for EXE in [CGP+06].
zero), secunt)_/ flaws_(e.g. buffer overflows) or violations he only approach which seems to be comparable with our
of user assertions. Since they do not ensure the coverage Qe ayment of called functions is a recent extension of DART,
a testing criterion, the resolution procedures used fan pat named SMART[God07]. We will make a detailed compar-
predicate solving in DART, CUTE or EXE do not need to be ison with SMART in Section 5 below but we can already

complete and can be limited to linear constraints (as is thenote that our approach uses specifications of called func-
case fpr DARTfandthZ:UTIEI). The combplﬁt?nes.f, (w.r.t dthe tions while SMART needs their source code. This means
test criterion) of PathCrawler comes both from its testdat 0+ o,y approach can be used when the source code of

selection strategy and its constraint solver which alse han called functions is not available (COTS or library compo-
dles non-linear constraints [WMMRO05]. However, this the- nents).

oretical completeness holds only in the absence of a time- \ye now recall from the proof of PathCrawler's com-
out during constraint resolution. Solving constraintsrove pjeteness in [WMMO4] the notations that will be necessary
finite domains and finite path predicates is NP-complete inn the rest of the paper. Each path predicE@; can be

the worst case but in practise, our test selection strategygiven as the ordered conjunction of all successive branch
and constraint solving heuristics alleviate this problédm. conditions re-expressed in terms of input variablgs;, en-
PathCrawler, test selection and constraint solving are im-countered along the corresponding path:

plemented in the ECLiIPSe constraint logic programming PC, = Cis A A Ciu 1)
environment [WNJ97]. Our strategy of constraint resolu- o wr
tion uses a randomised labelling strategy similar to the one with pi the number of conditions (such agile or if in-

structions) in the path associatedi@’;. As in CUTE and of the path corresponding tBC;, with the last condition
DART, our strategy is a depth-first construction of the tree negated.
of feasible execution paths, as shown in Figure 1. For the treatment of loops and the classicgdath crite-
rion, the definition ofM axC; is modified to take into ac-
c1 c1 count the number of loop iterations (as fafaxCs in Fig-
\Cl \ \ ure 1). Conditions at the starting point of loops are anno-
O % o Qe tated with the number of loop iterations. By default, when
c2 there are loops, the test selection strategy iterativety ge
\ erates data inputs, with an increasing number of loop ex-
Notcs |, \C3 ot cs Not C3 c3 ecutions. If the negation of a condition Woulld.result ina
\ /\ loop re-entry after or more iterations, then it is not ex-
et Notca A\ ca ca Mca plored. When considering the longest conjunction of the
/ \ / \ current prefix, we never generate a new path predicate prefix
MaxC2 o
PC2 s

Not
containing more thah loop iterations. However, a test-data
NotCs 7 : . . : 1
y which is a solution of a such path predicate prefix can oc-
MaxC3 casionally result in the coverage of a path containing more
PC3 thank iterations of a loop.
The PathCrawler process terminates when there are no

more paths to explore.
Y Not C1 ,y
MaxC3 N 3 Our treatment of function calls

Not C2 R c2 Not G2 Cc2
MaxC3 \ unsatisfiable We choose to abstract the called functions of the func-

Not C3 c3 NotC3 /\C3 tion under test by using their specifications [Mou07]. The
/ \ / \ idea is to abstract the internal structural paths of thesdall

Not c4 o< functions by the definition of the corresponding functional

Not C5

Not C4 ° Cc4 .
/ \ domains.
S cs
>k !

NotC5 .- \ 3.1 Specification
>k

The user supplies the specifications of the called func-
Figure 1. Test selection strategy tions, validated during a previous test or proof campaign
or provided by the authors of off-the-shelf-software. They

are expressed in a specification language corresponding to
To find a solution for the next test-data ,, we choose first-order logic on finite domains. We choose to express
to first solve the longest prefix dPC; with the last con- the specifications of the functions in the form of pre/post
dition negated which we call/axC;. MaxC; is defined couples [Hoa69]. By doing this, we characterise the con-

as: straints for the correct use of a function and we identify the
MazCi=Cia A+ ACim-1 A= Cim (2) sub-domain on the inputs corresponding to each behaviour
with m € [2..pi] of the called function.
If this selected conjunction/axC; is unsatisfiable, we Every precondition is a set of constraints on entries to be
try again with the second longest conjunction that is respected for correct behaviour of the function. The precon
Cia N ANCim—1 A= Cimi. dition, Pre(g, W), of a functiong, characterises the func-

Note that when a path predicate prefix has no solution, ourtion’s definition domain, wheréV is the vector of input
strategy does not construct or explore any path predicatevariables of the function.

extending this prefix because we prune the search tree at A postcondition is a set of constraints which the function
the branch associated with this prefix. On the contrary, if has to respect after execution for a given input sub-domain.
MazC; is satisfiable, then a new test-data, is selected, We choose the following format of postconditions:
corresponding to the path conditié?C; .. The associated .

path contains at least conditions but possibly even more Post(g, W, 2) : (D(g, W) A Qlg, W, 2))
corresponding to the complete path whose beginning veri-with D(g, W) an input sub-domain of the function and
fies the first required conditions. Again, we have to consider Q(g, W, Z) characterising the expected behaviour, wift.

all the prefixes (which have not previously been explored) andZ for D(g, W), with Z the vector of output variables.

This formatis easy for users to understand. Furthermore, The implementation of our treatment of function calls

it is frequently used to specify conditions in state-trtiosi imposes certain limitations on the specifications supplied
systems and is already widely used in industry. by the user.

By analogy with the Hoare logic triplet [Hoa69], Firstly, we need specifications which are complete for
the preconditionsPre(g,W) and every postcondition all the contexts of called functions: the domains of the call
Post;(g, W, Z) of g can be represented as : sites for the called function must be covered by the specifi-

cation. Secondly, we need deterministic specifications : fo
Pre(g,W) A Di(g, W) [9(W) = Z] Qi(9, W, Z) any instantiation of the input vectd¥ satisfying the pre-

The intuitive sense of the previous Hoare triplet is that if condition, there exists at most one in_stan_tiation Qf the out

W verifies Pre(g, W) A D;(g, W) theng ends and thef’ put vectorZ such that the postc_ondmon is satisfied (notg
andZ verify Qi (g, W, Z). that _for _the last p_re/pps} couple in Example 3.1, the speci-
fication is deterministic in spite of the presence of the-exis

As in most automatic tools treating Hoare logic, we im- X -
tential quantifier).

posethat)(g, W, Z) is a functional expression &f accord-
ing to W i.e. which does not introduce supplementary con-
ditions onW which are not already implied b (g, W). 3.2 Abstract graph

So the following relation is verified:
As for the representation in the form of CFG of the

Dom(Post(g,W, Z))jw = Dom(D(g, W))|w code source of a function, we represent the specification
of a called functiong in the form of a graph. We use a

with Dom(P(W))w representing the domain of the values representation close to the CFG of a function i.e. a con-

of W verifying P(W). :) . :
nected and directed graph with a unique entry and a unique
tior\:\ge .shall note a couple pre/pasi; (g, ¥, Z) of a func- exit. The conditions associated with the arcs correspond to

the conditions on the entries of the pre/post couples of the
PPi(g,W, Z) = (Pre(g, W) A Di(g, W), Qi(g, W, Z)) called functionPre(g, W) A Di(g, W) (with the hypothe-
sis that the function is called only on its definition domain)
The specification of the functiog, noted Spec(g, W, Z) Nodes represent meta-instructidisN D(Z|Q; (g, W, Z))
corresponds to a finite set of pre/post couplesyfor determining an instantiation fdf with the input/output re-
lation defined by the conditions @;(g, W, Z). As the
Spec(g, W, Z) : {PPi(9, W, Z) }ier function specification is complete, at least one pre/post
couple is activated for any call if the precondition is re-

: N spected. There is thus at least one feasible path in the ab-
Egﬁrgﬂfxg%&'eerf 1'3 et?ei srﬁeecrlflcv?ﬂ%r;] (r)éthhrﬁ Scﬁlls?nzgp_c' stract graph of a called function for each of its calls. Ripal

val of an arrayw1 of lengthw2 in which we are looking for ~ 8S the specification is deterministic, the meta-instrustio
the value provided by3. FIND(Z|Q:(g,W, Z)) determine a unique instantiation

of Z verifying Q;(g, W, Z) for a given instantiation ofV’.

with I afinite set of numbers.

FUNCTI ON get _inter
/*@requires

@(forall i,(0<=i)&&(W2-1>i)&&(WL[i]<=wi[i +1])) Definition 3.1 For a functiong defined by its specification
O @ ensures Spec(g, W, Z) with npre/post couples, the associated ab-
@ ((WL[0] >wW8) => (z1=-2)) stract graph is a graph witl2 + n nodes withZ' the unique
o e kit e 1] o) = entry node S the unique exit node andnodesn; labelled

(exist i,(0<=i)&&(w2-1>i)&&(WL[i]<=wB) && by the meta-instruction8I N D(Z|Q;(g, W, Z)) built from
‘@‘“‘/3<:M[P+1])) &&(z1=1)) the specification.

END The abstract graph of the functian hasn * 2 edges,

. - _) includingn edges E, n;) labelled by the conditions o/
The arraywl is sorted in increasing order, the function re(g, W) A Di(g, W).

returns -2 if the sought value is lower than the first ele-

ment of the array and -1 if the value is greater than the The semantics of an abstract graph such as the graph

last element. The concrete syntax used below is the one Oéhown in Figure 2 Corresponds to the semantics of a con-
our PathCrawler tool. The different elements involved can ditional structure (switch).

be easily understood. The functiget _i nt er is defined
for all values and is specified by means of three pre/postExample 3.2 The abstract graph of the called function

triplets. For example, the first one is defined by get i nt er, used in the previous examples 1.1 and 3.1,
D, (get . nter,(wl,w2,w3)) = (wl[0] > w3) and is shown in Figure 2. We add a node to the beginning
Qi(get i nter, (wl,w2,w3),z1) = (21 = —2). and the end of the abstract graph callétyet_inter and

Sget_inter to link it with the structural graph of the calling 4 Path coverage of mixed graph
function.

In the simple unit-testing method
PreQW): . PathCrawlerfWMMRO05], the C instructions are trans-
D3(W): (W1[0]<=w3) lated into Prolog clauses during the pretreatment of the

Pre(W): ... Pre(W): ...
D1(W): (W1[0]>w3) D2(W): (wl[w2-1]<=w3)

Nwliw2-11>w3) functions. Now, the functional description of the called

graph is also translated into Prolog clauses. These are
interpreted as constraints at the time of the activation of
the execution path and at the construction of the associated
path predicate.

In the same way as the structural constraints encoded in
the instrumentation of the source code, the constraints en-
coded from the abstract graph of a called function allow us
to define the path predicate as well as the selection domain

Figure 2. Abstract graph of get _i nt er of the next test-case.

(FIND Z | Q3(W,Z))
Q3(W,2) : (exist i,(i>=0) N (i<w2-
N (wifi]<=w3)

N (wi[i+1] >w3)) N z1=i

FIND(Z | Q1(W,Z))

QI(W.2)(z=-2) (FIND Z| Q2(W,2))

Q2(W,2) : z1=-1

E
mode l

mode

3.3 Mixed graph

Pre(w): ...
D3(W): (W[0]<=w3)
Nwl[w2-1]>w3)

To build the mixed graph of a calling function, abstract
graphs of called functions replace their CFG during the un-
folding of the CFG of the calling function. First of all, the
source code of the calling function is modified such that
calls are isolated while preserving the semantics of tHe cal
ing function. So, we ensure that each node of the CFG con-
tains at most one call instruction. In fact, the source code o

of the function under test undergoes an initial pretreatmen 6200
7 /

FIND Z | Q3(W.Z
FIND(Z | QL(W.Z)) Q3(W(,Z) 3 (exi‘st i, %J:o)) A

QL(W,2):(z=-2)

(i<w2-1) f walll<=ud)
(W1[i+1] >w3))\z1=i]

x>=0
&& x<15

i<=n-1_~"

using the static analysis tool CIL [Lan06]. One of the imme-
diate consequences is that an instruction possesses at most
one expression with side effects. So a call instruction can-
not be used to label an edge. Every node containing a call
instruction in the CFG of the function under test is replaced
by the abstract graph of the called function.

We thus obtain the mixed graph of the function under
test containing the semantics of the C language for the func-
tion under test and the semantics of the specification for the
called functions.

The insertion of an abstract graph consists of three steps.
The first one allocates to the abstract input parameters of
a called function the values of the actual call parameters
expressed in terms of the concrete variables. After determi
nation of the abstract outputs, the second step allocates, t Figure 3. Mixed graph of appl y_f
a subset of the concrete variables of the function under test
the values of the abstract output variables. The third step

inserts the FIND meta-instructions into the mixed graph. The encoding of the meta-instructidh/ N D is direct

in our context. Indeed, if one of the branches of our
abstract graph was exercised, the associated constraints

) . Pre(g,W) A D;(g,W) are verified. The submission of
andSget_inter of the abstract graph shown in Example 3.2 these constraints and 6% (g, W, Z) in our constraint solver

are labelled with the mapping between the abstract variable corresponds to a C8Rvhose solution is a valid instantia-

names appearing in the specification and the concrete C; .
, P 9 b , yon of Z. The completeness on the calling contexts and the
variable names or access paths used in the source code o

the function under test . 1Constraint Satisfaction Problem

Pre(W): ...
D3(W): (Wi[0]<=w3)
Nwi[w2-1]>w3)

FIND(Z | QL(W,2)) Qs(w(?)N;D(ei ilsg3<wg>)
QLW,2):(z=-2) Réwz—l) A (w’lﬁ]cws)
(W1[i+1] >w3))N\z1=i

S

Example 3.3 The mixed graph of our example is shown in
Figure 3. For each function call, the two nod&get_inter

determinism of the specifications guarantee the existeince o G
a unique instantiation of respecting the CSP for a given ﬂg
instantiation ofi1/. N

4.1 AMP strategy P
. The first proposed strategy is the most natural: it corre- d>§><>©d>©
ponds to the coverage of all the feasible paths of the mixed | | — T
graph, i.e. all feasible paths of the function under testand v\ |
all the functional domains for every calling context of the \;5;
called functions. We shall call the associated criteridi “a MaxCL, < \\/
mixed-paths” (AMP).] 0
The application of this criterion is immediate here: we N
submit the mixed graph to the standard selection strategy of ham
PathCrawler. The mixed graph is then totally covered by a PC1
depth-first exploration.
However, if we only need to cover all the paths in the
calling function, then the AMP criterion sometimes results It
in redundant tests. These are the tests which cover mixed 27

-~
\-“xp>

AR
\

ifications of called functions. They exercise differentdun ‘s,
tional domains within a called function but are identical P

within the calling function.

paths differing only in their abstract parts issued froncspe &k

T \MaxC3

" i TS

\Q

4.2 MCMG strategy

To treat all-paths coverage of the calling function
only, we introduce our second criterion, called “minimal-
coverage-of-mixed graph” (MCMG). This requires 100%
coverage of all feasible paths of the calling function, with
out imposing any particular coverage of the called function

The application of this new criterion requires a modifi-
cation of PathCrawler’s test selection. Where the strategy
would usually explore a new functional domain of a called Figure 4. Second strategy: criterion MCMG
function, two scenarios are now possible. The choice de-
pends on whether all path suffixes after the return from the

called function are already covered for the context of the))
current call. If this is the case, then we do not need to ex-[G0d07]. This paper describes how SMART replaces func-

plore any more functional domains in this calling context. tion calls by function summaries. These are logical disjunc
Instead, we go back up the path predicate to negate a conditions of path predicates (together with the path calcufgtio
tion preceding the function call, as for the prefikazCs in DART[GKSO05] is run on the calling function and when a
Figure 4. Otherwise, we explore a new functional domain call of a part_|cular func'uon_ is er)count_er_ed for the f|rstelm
in the called function but limit the exploration of the path then afunction summary is built. This is done by running
suffixes after return from the calling function to the suffixe DART on the called function in this calling context and

which have not yet been covered in this calling context (as forming the disjunction of the path predicates and calcu-
for MazCs in Figure 4). lations for every path covered. At the next call of the same

function, if the concrete input values of the called funatio
) . respect one of the path predicates in the summary, then the
5 Discussion and Results function call is replaced by this summary. If not, a new
function summary is built for this calling context. Thus,
In this section, we will not present new benchmarks at the next encountered function call, the method will com-
but will illustrate the advantages of our approach both on pare the new concrete input values with each of the function
our motivating example and on other examples taken from summaries.

& unsatisfiable

PC4

-]]

This approach avoids repeating the exploration of the
same called function when it is called several times with
compatible calling contexts. However, it imposes the ma-
nipulation of potentially enormous disjunctions of con-
straints which risk being intractable (even for modern SAT
solvers). Furthermore, according to our understanding of
[God07], by testing for intersection of calling contexts
rather than inclusion, SMART runs the risk of incomplete
coverage of the calling function, as shown on our example
in the next Section.

5.1 Owur motivating example

Let us recall our motivating example, whose code was
presented at the beginning of this paper in Example 1.1
and its specification in Example 3.1. The calling function
appl y_f contains 6 different execution paths, 5 of which
contain a call to the functioget _i nt er . Note that only 4
paths are feasible: the two paths evaluating the condition a
lines 30 and 40 as true are infeasible.

The called functionget _i nt er contains 10 feasible
paths: 2 paths outside tfi@r loop and 8 paths in the loop.
We thus have 31 possible execution paths if the called func-
tion is inlined, of which only 16 are feasible. We will not in order to follow the path suffix which has a true condi-
enumerate these test-cases but they correspond to the po§on at line 34. In this case, SMART would not cover paths
sible combination of feasible structural paths of the nglli ~ with this suffix. This is why SMART cannot always cover
function and feasible structural paths of the called functi ~ as many paths in the calling function as those covered by

If we observe the specification of the called function, DART with function inlining.
there are only 3 functional domains. The corresponding
mixed graph, shown in Figure 3, contains 16 differentmixed 5.2 Other examples
paths (not the same as the 16 feasible paths above). We have
already noted the presence of dead code in Example 1.1, i6.2.1 First example from [God07]
means there are infeasible mixed paths.

With the AMP strategy, we obtain 5 test cases. Figure 5
shows the simplified mixed graph appl y f (cf. Figure _

3) and the mixed paths which are covered. s int ts bositive(int x)

In Figure 5, we can observe that only one of the two {
paths 4 and 5 is needed to obtain the coverage of all striic-' ieﬁ f;ﬂ) 1
tural paths of the calling function. Indeed, with our second return 0;

Figure 5. Mixed paths covered for appl y _f

We use one of the examples applied to the method SMART
in [God07]. The code of the function under test is:

strategy MCMG, we obtain only 4 test cases, covering orjly f,oi d top (int s[N){

paths 1 to 4 of Figure 5. 0
In this previous example, the called function is called jn

two different contexts. If the first calling context to be ex-

plored is the one with the more restricted domain (at life

int i,
err=0;
for(i=0;i<Ni-++)

cnt=cnt+i s_positive(s[i]);
if(cnt==3)

err=1;

cnt =0;

29 in Example 1.1), then SMART would use the summasy return;

of this first context for the exploration of the second one teat

line 36). But as the first calling context is more restricted, We can see that only two paths of the function under test
two paths in the called function which are feasible in the t op are feasible while the inlining treatment of the called
second calling context will not be represented in the func- functioni s_posi t i ve covers2" paths. Following an in-
tion summary. These are the paths which have true condidining treatment, we have covered this function with=
tions at line 8 and line 11. These pathsin the called function 10 and we obtainl024 test cases ir2.27s cpu on Linux
will therefore not be explored in the second calling context 2GHZ. This number of feasible paths can be explained by
But one of these paths must be taken in the called function2 facts: (1) two paths of the function under test corre-

2w N R

o ©®~N o

i

~N o s ®WwN R

spond to the paths verifying or not the conditional instruc-
tioni f (cnt ==3) , (2) the loopf or contains only one fea-

The calling functiort op contains 3 possible execution
paths. With an inlining method, there &e n — 1 feasible

sible path because this loop has a fixed number of iterationspaths.

SMART performs only 4 runs to cover the function un-

SMART systematically executes all possible paths of

der test : 2 runs to build the path summaries of the called these functions separately. For the called fundtionat e,

functioni s_posi ti ve and 2 runs using these summaries

to cover the 2 paths of the calling function.
If we apply our AMP strategy to the corresponding

mixed graph, we cover alt"V paths of the mixed graph.
With N = 10, we obtain1024 test cases irR.21s cpu on
Linux 2GHZ. Our AMP strategy has a similar execution
time to that of function inlining. This is easy to explain:
the called function contains 2 structural paths and 2 pet/po
couples in its specification. The associated specification o
the called function is:

FUNCTI ON i s_positive

/*@requires

@ (true)

@/

/*@ensures

@((wi>w2) => (z1=1))
@ ((wl<=w2) => (z1=0))
@/

END

We can see that this specification is similar to the implemen-

SMART builds a summary which is the disjunctionf n
terms for the2 x n paths. Next, SMART tries to explore the
3 paths of the function under teisbp using the summary to
replace the called function. For this example, SMART ex-
ecute=22n + 3 runs so the number of runs grows in a linear
way with the size of the input string.

Using our AMP strategy, the called function is replaced
by the corresponding abstract graph which contains 2nly
abstract paths: the called function possessésnctional
domains (the string does or does not contain the character).
With this strategy, we would execute only 3 feasible mixed
paths. One path leads to the execution of the return instruc-
tion at line 4 of the calling functionop. Another path leads
to the return instruction at line 5 of the function and the las
path leads to the return at line 6. For each of these paths,
only one functional domain can be activated. Bhmixed
paths covered by the AMP strategy correspond exactly to

tation and provides no combinatorial benefit. We see herethe3 feasible paths of the function under test so the MCMG

that our AMP strategy is only effective if the called functio
possesses more feasible structural paths than functional d
mains.

However, if we apply the second strategy, MCMG, we

strategy executes the same test cases.

In our approach, the number of cases to be considered
depends on the number of pre/post cases in the specification
instead of the number of feasible paths of the called func-

cover just the 2 test-cases corresponding to the 2 feasibldions. If there are very many paths then with a declarative

paths of the function under test. Wit = 10, we cover
2 test cases i19.09s cpu on Linux 2GHZ. Obviously, the
strategy MCMG is more effective for this example.

5.2.2 Second example from [God07]

Now, let us take another example extracted from[God07].
The called function is:

//locate index of first character c

/1 in null-termnated string s
int locate(char* s,int c){
int i=0;
while(s[i]!=c)
{ if (s[i]==0)
return -1;
i ++}
return i;

}

The inputs are a string of maximum sizen with s[n]
zero and a characterto be searched for in this string. The
called functiorl ocat e contain * n execution paths it

is nonzero ana, paths ifc is zero. The function under test
is:
void top(char *input){// assume input is null-term nated

int z;

z=l ocate(input,’a);

if (z==-1) return -1;

if (input[z+1]!=":") return 1;

return O;

}

specification the user can often limit the complexity of test
case generation. This can be seen as an advantage of our
approach. The other advantage being that it preserves the
completeness of the coverage of paths in the calling func-
tions.

6 Conclusion

Benchmarking on a range of examples is still in
progress. However, the experiments described in this
paper showed decisive results. The exploration of the
mixed graph according to the AMP criterion shows that
our objectives are reached: the coverage of the function
under test is maintained and the exploration of the called
functions is limited. The application of the MCMG
criterion on the mixed graph allows the exploration of the
called functions to be limited even further by eliminating
the test-cases which are not needed for the coverage of the
calling function alone.

We have seen an example of grey-box testing as the joint
use of specification and code source for test generation.
This technique could be put to other uses.

2According to the reasonable hypothesis that there are naretisral
paths than functional domains

For example, we can envisage the resolution of [GMS99] N.Gupta, A. P. Mathur, and M. L. Soffa. UNA based it-
the “missing path” problem. A missing path is a erative test data generation and its evaluatiorPrsc. ASE'99
functionality of the specification which “has not been pp.224-232, 1999.

implemented’[GG75]. In fact, as soon as we dispose of [GN97] M. J. Gallagher and V. Lakshmi Narasimhan. Adtest: A

a precise spegification, this problem.is addressed by con- test data generation suite for ada software systd#eiE Trans.
formance testing. In our case, the idea would be to ap- ggft. Eng.23(8):473-484, 1997.

ply the PathCrawler strategy on each input subdomain de-

fined in the specification (i.e. from ea&rom (Pre(g, W)A [God07] P. Godefroid. Compositional dynamic test generati
D;(g,W))). This would ensure a structural coverage of N Proc. POPL 07 pp. 47-54, 2007.

every ide.nftified functional subdomain. The corresponding [Hoa69] C.AR. Hoare. An axiomatic basis for computer pro-
postconditions would be used to set up an automatic oracle’ 4-amming.Com. of the ACM12(10):pp. 567-580, 1969.
during PathCrawler exploration.

The AMP strategy covers all the functional domains of [Kor96] Bogdan Korel. Automated test data generation far-pr
the called functions for each of their call contexts. This grams with procedures. Proc. ISSTA'96pp. 209-215, 1996.
is why it CO_UId also_ be gsed instead of unit tgstlng of t_he [Lan06] CIL : C Intermediate LanguageCIL - Infrastructure
called functions. This point would allow us to dispense with * 5 ¢ program Analysis and Transformation 2005/2006.
our basic hypothesis that called functions are alreadgdest http://manju.cs.berkeley.edu/cill.

Indeed, the AMP strategy allows the implementation of a

technique of in-context testing for the called function;s A [MAOO] B. Marre and A. Arnould. Test sequences generation
in-context oracle can be built from a comparison between ~ rom Lustre descriptions : GATeL. IRroc. ASE'00 pp. 229~
the outputs obtained at each execution and those calculated 237, 2000.

by the abstract graph. [MM98] C. C. Michael and G. McGraw. Automated software

Finally, assuming we do not dispose of a convenient test data generation for complex programs. Pioc ASE'98
specification for called functions, the exploration of thei pp- 136-146, 1998.
source code could be limited with a strategy inspired from
the MCMG strategy. The idea is to cover only those paths
in the called functions which are necessary for the complete
coverage of the paths of the calling function.

[Mou07] P. Mouy. Automatisation du test de tous-les-chemins en
présence d'appels de fonctioPhD thesis, Université d’Evry
Val d’Essonne, 2007.

[PM87] R.E. Prather and J. P. Myers, Jr. The path prefix soéwa
References testing strategy. [IEEE Trans. on Soft. Eng13(7):761-766,
1987.

[BM93] W.G. Bently and E. F. Miller. Ct coverage—initial nass. [SDO1] N. Tran Sy and Y. Deville. Automatic test data genierat
Software Quality2(1):29-47, 1993. for programs with integer and float variables.Aroc. ASE’01

.13-21, 2001.
[CGP+06] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and PP

D. R. Engler. Exe: automatically generating inputs of death [SMAO05] K. Sen, D. Marinov, and G. Agha. Cute: A concolic

In ACM Conf. on Computer and Communications Secppity unit testing engine for c. IRroc. ESEC/FSE'05p. 263-272,
322-335, 2006. 2005.

[FK96] R. Ferguson and B. Korel. The chaining approach [WMMO3] N. Williams, B. Marre, and P. Mouy. On-the-fly gen-
for software test data generationACM Trans. Soft. Eng. eration of structural tests for C functions. Pnoc. ICSSEA’03
Methodol, 5(1):63-86, 1996. 2003.

[GBROO] A. Gotliep, B. Botella, and M. Rueher. A CLP frame- |[WMMO04] N. Williams, B. Marre, and P. Mouy. On-the-fly gen-
work for computing structural test dataNCS 1861:399-413, eration of k-paths tests for C functions : towards the autamna
July 2000. of grey-box testing. IiProc. ASE’'04 pp. 290-293, 2004.

[GDO7] V. Ganesh and D. L. Dill. A decision procedure for bit- [WMMRO5] N. Williams, B. Marre, P. Mouy, and M. Roger.
vectors and arrays. IBAV, pp. 519-531, 2007. Pathcrawler : Automatic generation of path tests by comigini

[GG75] J. B. Goodenough and S. L. Gerhart. Toward a theory static and dynamic analysis. Rroc. EDCC'05 pp. 281-292,

of test data selectionlEEE Trans. Soft. Eng1(2):156-173, 2005.

1975. [WNJ97] M. Wallace, S. Novello, and J.SchimpECLiPSe: A
[GKS05] P. Godefroid, N. Klarlund, and K. Sen. DART: Di- platform for Constraint Logic ProgrammindC-Parc, Imperial

rected automated random testing. ACM SIGPLAN 2005 College, London, 1997.

Conf. PLDI'05 pp. 213-223, 2005.

10

