
© 2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for

all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.

Generation of all-paths unit test with function calls

Patricia Mouy, Bruno Marre, Nicky Williams
CEA/LIST, LSL, 91191 Gif Sur Yvette Cx, France

firstname.lastname@cea.fr

Pascale Le Gall
Ecole Centrale Paris, Laboratoire MAS

Grande voie des Vignes, 92295 Chatenay Malabry, France
pascale.legall@epigenomique.genopole.fr

Abstract

Structural testing is usually restricted to unit tests and
based on some clear definition of source code coverage. In
particular, the all-paths criterion, which requires at least
one test-case per feasible path of the function under test,
is recognised as offering a high level of software reliabil-
ity. This paper deals with the difficulties of using structural
unit testing to test functions which call other functions. To
limit the resulting combinatorial explosion in the number of
paths, we choose to abstract the called functions by their
specification. We incorporate the functional information on
the called functions within the structural information on the
function under test, given as a control flow graph (CFG).
This representation combining functional and structural de-
scriptions may be viewed as an extension of the classic CFG
and allows us to characterise test selection criteria ensur-
ing the coverage of the source code of the function under
test.

Two new criteria will be proposed. The first criterion
corresponds to the coverage of all the paths of this new rep-
resentation, including all the paths arising from the func-
tional description of the called functions. The second cri-
terion covers all the feasible paths of the function under
test only. We describe how we automate test-data genera-
tion with respect to such grey-box (combinations of black-
box and white-box) test selection strategies, and we apply
the resulting extension of our PathCrawler tool to examples
coded in the C language.

1 Introduction

Structural testing is popular because the coverage of the
source code can be clearly defined and quantified. However,
the confidence in the code which can be inferred from a

successful test run depends on the coverage criteria and on
the oracle used to evaluate the test results. Even assuming a
perfect oracle, 100% coverage of reachable instructions or
branches only guarantees the detection of errors which are
always provoked, whatever the context of execution of the
instruction or branch. However, in the case of full coverage
of feasible execution paths, all instructions and branchesare
tested in all possible execution contexts.

Even for unit testing, full path coverage is often assumed
to be an unrealistic goal because of the number of tests re-
quired. This is particularly true when it is not automated.
We have developed the PathCrawler tool which automati-
cally generates test inputs for 100% coverage of feasible
paths for unit testing of C source code. With an automatic
oracle, PathCrawler makes fully automatic unit testing pos-
sible for many C functions. For the treatment of loops with
a variable number of iterations, the all-path criterion can
be restricted to a variant : thek-path criterion (also known
as ct-coverage [BM93]) where the number of iterations in
loops is bounded by a given parameterk. However, path
coverage must be carefully defined when the function un-
der test calls other functions. Up until now, PathCrawler
has inlined the source code of called functions, risking a
combinatorial explosion in the number of paths and an un-
necessarily large number of tests if we consider that the all-
feasible-paths criterion only requires coverage of all paths
in the function under test itself.

For function calls, two methods are usually used. The
inlining method consists of including the source code of the
called functions in the source code of the function under
test so that the test criterion is applied to it as well. This
method amplifies the problem of the combinatorial explo-
sion of paths by combining the number of paths of the called
functions with the number of paths of the function under
test. The second method consists of replacing the called
functions with specialised modules, called stubs, built man-

1

ually in an ad-hoc way and often incomplete. In conclusion,
the usual ways to treat function calls cannot be used for the
automatic generation of unit tests. In this paper, we ad-
dress this limitation of structural testing. Our objectiveis
to ensure the preservation of full coverage of paths in the
calling function, while limiting the combinatorial explosion
of tested paths.

Example 1.1 This example serves us as a motivating ex-
ample and is inspired by a technique commonly used in
embedded software for the approximation of a continuous
function (linear approximation). It is taken from a real-
world industrial application, typical of critical embedded-
systems code. Consider the following example of source
code. The functionapply f is computing an approxima-
tion of a functionf and contains two function calls of the
functionget inter. More precisely, the calling function
apply f contains 6 different execution paths, 5 of which
contain a call to the functionget inter.

1 const int n=9;
2 const int t[9]={-15,-5,-3,-1,0,1,3,5,15};
3 const int f[9]={5,4,3,2,1,2,3,4,5};
4

5 /* CALLED FUNCTION returns -1, -2 or value in [0,n-2]*/
6 int get_inter(int val){
7 int r; int j;
8 if (val < t[0])
9 r = -2;

10 else
11 if (val>=t[n-1])
12 r = -1;
13 else
14 for(j=0;j<n-1;j++){
15 if ((val>=t[j])&&(val<t[j+1])){
16 r = j;
17 break;}
18 }
19 return (r);
20 }
21

22 /* CALLING FUNCTION */
23 int apply_f(int x, int mode){
24 int i; int ret;
25 if (mode)
26 if !((x>=0)&&(x<5))
27 ret = -300;
28 else {
29 i = get_inter(x); /*FUNCTION CALL (x:[0,5[)*/
30 if (i<0)
31 ret = -100;/*DEAD CODE : the called function
32 returns 4,5 or 6 with the previous calling context */
33 else
34 ret = f[i] * 2; }
35 else {
36 i = get_inter(x); /*FUNCTION CALL (x:int)*/
37 if (i<0)
38 ret = -100;
39 else {
40 if (i > n-1)
41 ret = -200;/*DEAD CODE : the called function
42 cannot return value > n-1 */
43 else
44 ret = f[i];}
45 }
46 return ret;
47 }

Although it is simple, the source code of the called func-
tionget inter results in a combinatorial explosion in the

number of paths in the calling function. This is because
each path in the calling function is duplicated for each pos-
sible number of iterations of the loop in the called function,
i.e. for each element of the constant arrayt.

In this example, in each duplicated path of the calling
functionapply f, a different element of the approximated
function, f, is applied but the calculation does not otherwise
change. In other words, the duplicated paths exercise differ-
ent constant data values and not different algorithms. In this
case, the real differences in the algorithm correspond to the
different paths in the calling functionapply f following
the calls toget inter (2 paths following the first call and
3 paths following the second call). There is also an execu-
tion path without a function call. Only these paths need to
be covered for the coverage of all the feasible paths of the
calling functionget inter.

Our method is based on a formal specification of the
called function. We assume that either the source code of
the called function is available and has already been in-
dependently validated or else the called function is library
or off-the-shelf software component (COTS) for which the
source code is not available but there is a detailed descrip-
tion of the functionality and restrictions on usage. We be-
lieve that in such cases, in a context of automated unit test-
ing, users are prepared to formalise the specifications of the
called functions. Either the called functions must in any
case be independently tested or proved, in which case for-
mal specifications would be very useful anyway, or else they
are documented in a form which is easy to transcribe to
formal specifications. We propose a specification language
which uses the same function names and types as the C code
and structures the specifications into pre/post conditions. It
is similar to the usual languages used for defining assertions
in source code (such as JML).

This work is an example of grey-box test selection strat-
egy that advantageously combines white box (structural)
and black-box (functional) strategies in order to achieve au-
tomation of unit testing.

In Section 2, we discuss related work and explain our
unit test method for PathCrawler without function calls. In
the next section, we present our novel treatment of function
calls. Next, we explain the two criteria defined for unit test-
ing with function calls. In Section 5, we present our first
results obtained with the prototype implementation and we
discuss this approach. Finally, we conclude with a brief
wrap-up and some perspectives.

2 PathCrawler overview and Related works

Our method [WMM03], [WMMR05], [WMM04]
named PathCrawler is a “path testing” method for sequen-
tial programs coded in an imperative language. Our test-
data generator prototype, also called PathCrawler, treats

2

ANSI C programs.

Like the dynamic approaches [FK96], [Kor96], [GN97],
[GMS99] and [MM98] to test data generation, our method
is based on dynamic analysis. Most dynamic approaches
use heuristic function minimisation. The iterative relax-
ation method in [GMS99] uses a linear approximation of
the path predicate but requires many executions of the func-
tion to derive an input for a given path. We use constraint
logic programming (CLP) to solve a partial path predicate.
In this way, our approach resembles [GBR00] and [SD01],
which are also based on constraint resolution. However, we
suffer neither from the complexity of their purely symbolic
approaches, nor from the number of executions demanded
by the dynamic approaches.

Unlike all the preceding approaches, PathCrawler aims
to cover all execution paths and not a particular path.
Indeed, PathCrawler was one of the first methods (af-
ter [PM87]) to be based on the modification of a
predicate of a previously covered path. These meth-
ods now include CUTE[SMA05], DART[GKS05] and
EXE[CGP+06], called “concolic” because they are based
on a collaboration of concrete instrumented executions and
symbolic execution analysis. For the instrumentation step,
all the tools use the static analysis tool CIL [Lan06]. Each
path predicate built from an instrumented execution is then
analysed to derive data inputs exercising an uncovered
path in an attempt to cover all feasible execution paths.
PathCrawler, DART and CUTE perform a depth-first ex-
ploration of the CFG of the function, while EXE performs a
kind of breadth-first exploration based on a system of forked
executions at each branching node of the CFG.

While PathCrawler is a structural test-data generation
tool (for the all-paths criterion), these other concolic tools
are presented as bug-finding tools, exploring execution
paths in order to exhibit run-time errors (e.g. divide by
zero), security flaws (e.g. buffer overflows) or violations
of user assertions. Since they do not ensure the coverage of
a testing criterion, the resolution procedures used for path
predicate solving in DART, CUTE or EXE do not need to be
complete and can be limited to linear constraints (as is the
case for DART and CUTE). The completeness (w.r.t. the
test criterion) of PathCrawler comes both from its test-data
selection strategy and its constraint solver which also han-
dles non-linear constraints [WMMR05]. However, this the-
oretical completeness holds only in the absence of a time-
out during constraint resolution. Solving constraints over
finite domains and finite path predicates is NP-complete in
the worst case but in practise, our test selection strategy
and constraint solving heuristics alleviate this problem.In
PathCrawler, test selection and constraint solving are im-
plemented in the ECLiPSe constraint logic programming
environment [WNJ97]. Our strategy of constraint resolu-
tion uses a randomised labelling strategy similar to the one

used in [MA00].
One major difficulty in program analysis is the han-

dling of alias relations. This problem is simplified when
analysing one unrolled path at a time as is done in all these
adaptive methods. A common restriction is to suppose that
there is no alias between fields of data-structure inputs un-
less explicitly specified by the user. Aliases then pose the
following two problems : 1) when translating branch condi-
tions into constraints on input values, intermediate assign-
ments which use a different alias must be recognised 2) cre-
ating a test-case which exercises a branch condition which
can only be satisfied in the case of an alias between differ-
ent fields of data-structure inputs. In all the tools presented
here, memory configuration and alias relations are handled
by an abstract memory-map. The ability to recognise pos-
sible alias relations (and cover all paths) relies on the preci-
sion of the memory-map and the extent to which alias rela-
tions are precisely handled by the constraint solver. Due to
their linear constraint solver, DART and CUTE encounter
difficulties in the treatment of aliases. In these tools, when
constraints with symbolic values cannot be handled by the
solver, the symbolic values are replaced by the correspond-
ing concrete values. While this use of concrete values may
compensate solver limitations, there is no way to estimate
the completeness of these approaches. The constraint solver
of EXE uses a dedicated SAT-solver connected to a “bit vec-
tors and arrays” decision procedure (STP)[GD07] in which
memory-map and alias relations can be completely repre-
sented. PathCrawler’s memory-map is less precise and can-
not treat aliases resulting from pointer arithmetic on record
types (struct in C), type unions or casts between data-
structures.

The subject of this paper is the extension of PathCrawler
to treat function calls. As in our initial version of
PathCrawler, CUTE uses an inlining approach for function
calls while this point is not addressed for EXE in [CGP+06].
The only approach which seems to be comparable with our
treatment of called functions is a recent extension of DART,
named SMART[God07]. We will make a detailed compar-
ison with SMART in Section 5 below but we can already
note that our approach uses specifications of called func-
tions while SMART needs their source code. This means
that our approach can be used when the source code of
called functions is not available (COTS or library compo-
nents).

We now recall from the proof of PathCrawler’s com-
pleteness in [WMM04] the notations that will be necessary
in the rest of the paper. Each path predicatePCi can be
given as the ordered conjunction of all successive branch
conditions re-expressed in terms of input variables,Ci,j , en-
countered along the corresponding path:

PCi = Ci,1 ∧ · · · ∧ Ci,pi (1)

with pi the number of conditions (such aswhile or if in-

3

structions) in the path associated toPCi. As in CUTE and
DART, our strategy is a depth-first construction of the tree
of feasible execution paths, as shown in Figure 1.

PC2

C1

C2

C3

C4

Not C3

Not C4

MaxC2

PC1

C1

C2

Not C3 C3

MaxC1

C5

C1

C2

C3

C4

Not C3

Not C4

Not C5

PC3

MaxC3

C1

C2

C3Not C3

C4Not C4

C5Not C5

MaxC3

>k

Not C2

C1

C2

C3Not C3

Not C4 C4

C5Not C5

>k

unsatisfiable

Not C2

MaxC3

Not C1

Figure 1. Test selection strategy

To find a solution for the next test-datati+1, we choose
to first solve the longest prefix ofPCi with the last con-
dition negated which we callMaxCi. MaxCi is defined
as:

MaxCi = Ci,1 ∧ · · · ∧ Ci,m−1 ∧ ¬ Ci,m (2)

with m ∈ [2..pi]
If this selected conjunctionMaxCi is unsatisfiable, we

try again with the second longest conjunction that is
Ci,1 ∧ · · · ∧ Ci,m−1 ∧ ¬ Ci,m−1.
Note that when a path predicate prefix has no solution, our
strategy does not construct or explore any path predicate
extending this prefix because we prune the search tree at
the branch associated with this prefix. On the contrary, if
MaxCi is satisfiable, then a new test-datati+1 is selected,
corresponding to the path conditionPCi+1. The associated
path contains at leastm conditions but possibly even more
corresponding to the complete path whose beginning veri-
fies the first required conditions. Again, we have to consider
all the prefixes (which have not previously been explored)

of the path corresponding toPCi+1 with the last condition
negated.

For the treatment of loops and the classicalk-path crite-
rion, the definition ofMaxCi is modified to take into ac-
count the number of loop iterations (as forMaxC3 in Fig-
ure 1). Conditions at the starting point of loops are anno-
tated with the number of loop iterations. By default, when
there are loops, the test selection strategy iteratively gen-
erates data inputs, with an increasing number of loop ex-
ecutions. If the negation of a condition would result in a
loop re-entry afterk or more iterations, then it is not ex-
plored. When considering the longest conjunction of the
current prefix, we never generate a new path predicate prefix
containing more thank loop iterations. However, a test-data
which is a solution of a such path predicate prefix can oc-
casionally result in the coverage of a path containing more
thank iterations of a loop.

The PathCrawler process terminates when there are no
more paths to explore.

3 Our treatment of function calls

We choose to abstract the called functions of the func-
tion under test by using their specifications [Mou07]. The
idea is to abstract the internal structural paths of the called
functions by the definition of the corresponding functional
domains.

3.1 Specification

The user supplies the specifications of the called func-
tions, validated during a previous test or proof campaign
or provided by the authors of off-the-shelf-software. They
are expressed in a specification language corresponding to
first-order logic on finite domains. We choose to express
the specifications of the functions in the form of pre/post
couples [Hoa69]. By doing this, we characterise the con-
straints for the correct use of a function and we identify the
sub-domain on the inputs corresponding to each behaviour
of the called function.

Every precondition is a set of constraints on entries to be
respected for correct behaviour of the function. The precon-
dition, Pre(g, W), of a functiong, characterises the func-
tion’s definition domain, whereW is the vector of input
variables of the function.

A postcondition is a set of constraints which the function
has to respect after execution for a given input sub-domain.
We choose the following format of postconditions:

Post(g, W, Z) : (D(g, W) ∧ Q(g, W, Z))

with D(g, W) an input sub-domain of the function and
Q(g, W, Z) characterising the expected behaviour, w.r.t.W

andZ for D(g, W), with Z the vector of output variables.

4

This format is easy for users to understand. Furthermore,
it is frequently used to specify conditions in state-transition
systems and is already widely used in industry.

By analogy with the Hoare logic triplet [Hoa69],
the preconditionsPre(g, W) and every postcondition
Posti(g, W, Z) of g can be represented as :

Pre(g, W) ∧ Di(g, W) [g(W) = Z] Qi(g, W, Z)

The intuitive sense of the previous Hoare triplet is that if
W verifiesPre(g, W)∧Di(g, W) theng ends and thenW
andZ verify Qi(g, W, Z).

As in most automatic tools treating Hoare logic, we im-
pose thatQ(g, W, Z) is a functional expression ofZ accord-
ing toW i.e. which does not introduce supplementary con-
ditions onW which are not already implied byD(g, W).
So the following relation is verified:

Dom(Post(g, W, Z))|W = Dom(D(g, W))|W

with Dom(P (W))|W representing the domain of the values
of W verifying P (W).

We shall note a couple pre/postPPi(g, W, Z) of a func-
tion g :

PPi(g, W, Z) = (Pre(g, W) ∧ Di(g, W), Qi(g, W, Z))

The specification of the functiong, notedSpec(g, W, Z)
corresponds to a finite set of pre/post couples forg:

Spec(g, W, Z) : {PPi(g, W, Z)}i∈I

with I a finite set of numbers.

Example 3.1 Here is the specification of the called func-
tion of Example 1.1,get inter, which returns the inter-
val of an arrayw1 of lengthw2 in which we are looking for
the value provided byw3.

FUNCTION get_inter
/*@ requires
@ (forall i,(0<=i)&&(w2-1>i)&&(w1[i]<=w1[i+1]))
@*/
/*@ ensures
@ ((w1[0]>w3) => (z1=-2))
@ ((w1[w2-1]<=w3) => (z1=-1))
@ ((w1[0]<= w3)&&(w1[w2-1]>w3) =>
(exist i,(0<=i)&&(w2-1>i)&&(w1[i]<=w3)&&
(w3<=w1[i+1]))&&(z1=i))
@*/
END

The arrayw1 is sorted in increasing order, the function
returns -2 if the sought value is lower than the first ele-
ment of the array and -1 if the value is greater than the
last element. The concrete syntax used below is the one of
our PathCrawler tool. The different elements involved can
be easily understood. The functionget inter is defined
for all values and is specified by means of three pre/post
triplets. For example, the first one is defined by
D1(get inter,(w1, w2, w3)) = (w1[0] > w3) and
Q1(get inter, (w1, w2, w3), z1) = (z1 = −2).

The implementation of our treatment of function calls
imposes certain limitations on the specifications supplied
by the user.

Firstly, we need specifications which are complete for
all the contexts of called functions: the domains of the call
sites for the called function must be covered by the specifi-
cation. Secondly, we need deterministic specifications : for
any instantiation of the input vectorW satisfying the pre-
condition, there exists at most one instantiation of the out-
put vectorZ such that the postcondition is satisfied (note
that for the last pre/post couple in Example 3.1, the speci-
fication is deterministic in spite of the presence of the exis-
tential quantifier).

3.2 Abstract graph

As for the representation in the form of CFG of the
code source of a function, we represent the specification
of a called functiong in the form of a graph. We use a
representation close to the CFG of a function i.e. a con-
nected and directed graph with a unique entry and a unique
exit. The conditions associated with the arcs correspond to
the conditions on the entries of the pre/post couples of the
called functionPre(g, W) ∧ Di(g, W) (with the hypothe-
sis that the function is called only on its definition domain).
Nodes represent meta-instructionsFIND(Z|Qi(g, W, Z))
determining an instantiation forZ with the input/output re-
lation defined by the conditions ofQi(g, W, Z). As the
function specification is complete, at least one pre/post
couple is activated for any call if the precondition is re-
spected. There is thus at least one feasible path in the ab-
stract graph of a called function for each of its calls. Finally,
as the specification is deterministic, the meta-instructions
FIND(Z|Qi(g, W, Z)) determine a unique instantiation
of Z verifying Qi(g, W, Z) for a given instantiation ofW .

Definition 3.1 For a functiong defined by its specification
Spec(g, W, Z) with n pre/post couples, the associated ab-
stract graph is a graph with2 + n nodes withE the unique
entry node,S the unique exit node andn nodesni labelled
by the meta-instructionsFIND(Z|Qi(g, W, Z)) built from
the specification.

The abstract graph of the functiong hasn ∗ 2 edges,
includingn edges(E, ni) labelled by the conditions onW
Pre(g, W) ∧ Di(g, W).

The semantics of an abstract graph such as the graph
shown in Figure 2 corresponds to the semantics of a con-
ditional structure (switch).

Example 3.2 The abstract graph of the called function
get inter, used in the previous examples 1.1 and 3.1,
is shown in Figure 2. We add a node to the beginning
and the end of the abstract graph calledEget inter and

5

Sget inter to link it with the structural graph of the calling
function.

(FIND Z | Q3(W,Z))

Q2(W,Z) : z1=−1
(FIND Z| Q2(W,Z))

/\(w1[w2−1]>w3)
D3(W): (w1[0]<=w3)

Pre(W): ...

D2(W): (w1[w2−1]<=w3)

Pre(W): ...

FIND(Z | Q1(W,Z))
Q1(W,Z):(z=−2)

Pre(W): ...
D1(W): (w1[0]>w3)

Q3(W,Z) : (exist i,(i>=0) /\ (i<w2−1)
 /\ (w1[i]<=w3)

 /\ (w1[i+1] >w3)) /\ z1=i

Eget_inter

Sget_inter

Figure 2. Abstract graph of get inter

3.3 Mixed graph

To build the mixed graph of a calling function, abstract
graphs of called functions replace their CFG during the un-
folding of the CFG of the calling function. First of all, the
source code of the calling function is modified such that
calls are isolated while preserving the semantics of the call-
ing function. So, we ensure that each node of the CFG con-
tains at most one call instruction. In fact, the source code
of the function under test undergoes an initial pretreatment
using the static analysis tool CIL [Lan06]. One of the imme-
diate consequences is that an instruction possesses at most
one expression with side effects. So a call instruction can-
not be used to label an edge. Every node containing a call
instruction in the CFG of the function under test is replaced
by the abstract graph of the called function.

We thus obtain the mixed graph of the function under
test containing the semantics of the C language for the func-
tion under test and the semantics of the specification for the
called functions.

The insertion of an abstract graph consists of three steps.
The first one allocates to the abstract input parameters of
a called function the values of the actual call parameters
expressed in terms of the concrete variables. After determi-
nation of the abstract outputs, the second step allocates, to
a subset of the concrete variables of the function under test
the values of the abstract output variables. The third step
inserts the FIND meta-instructions into the mixed graph.

Example 3.3 The mixed graph of our example is shown in
Figure 3. For each function call, the two nodesEget inter

andSget inter of the abstract graph shown in Example 3.2
are labelled with the mapping between the abstract variable
names appearing in the specification and the concrete C
variable names or access paths used in the source code of
the function under test .

4 Path coverage of mixed graph

In the simple unit-testing method
PathCrawler[WMMR05], the C instructions are trans-
lated into Prolog clauses during the pretreatment of the
functions. Now, the functional description of the called
graph is also translated into Prolog clauses. These are
interpreted as constraints at the time of the activation of
the execution path and at the construction of the associated
path predicate.

In the same way as the structural constraints encoded in
the instrumentation of the source code, the constraints en-
coded from the abstract graph of a called function allow us
to define the path predicate as well as the selection domain
of the next test-case.

w1=t
w2=n
w3=val

/\(w1[w2−1]>w3)
D3(W): (w1[0]<=w3)

Pre(W): ...

Pre(W): ...
D1(W): (w1[0]>w3)

!mode

FIND(Z | Q1(W,Z))
(FIND Z| Q2(W,Z))

Q2(W,Z) : z1=−1Q1(W,Z):(z=−2)

i = z1

ret=−100

i<0

D2(W): (w1[w2−1]<=w3)
Pre(W): ...

x>=0

ret=−200

i<=n−1

(FIND Z | Q3(W,Z))
Q3(W,Z) : (exist i, (i>=0) /\

 (i<w2−1) /\ (w1[i]<=w3)
 /\ (w1[i+1] >w3))/\z1=i)

w1=t
w2=n
w3=val

/\(w1[w2−1]>w3)
D3(W): (w1[0]<=w3)

Pre(W): ...

i = z1

FIND(Z | Q1(W,Z))

Q1(W,Z):(z=−2)
(FIND Z| Q2(W,Z))

Q2(W,Z) : z1=−1 ret=−300

D2(W): (w1[w2−1]<=w3)

Pre(W): ...

D1(W): (w1[0]>w3)
Pre(W): ...

E

S

i>=0

i>n−1

i<0

ret=f[i]*2ret=−100

i>=0

ret=f[i]

mode

&& x<15

(FIND Z | Q3(W,Z))
Q3(W,Z) : (exist i, (i>=0) /\

 (i<w2−1) /\ (w1[i]<=w3)
 /\ (w1[i+1] >w3))/\z1=i)

!(x>=0
&& x<15)

Figure 3. Mixed graph of apply f

The encoding of the meta-instructionFIND is direct
in our context. Indeed, if one of the branches of our
abstract graph was exercised, the associated constraints
Pre(g, W) ∧ Di(g, W) are verified. The submission of
these constraints and ofQi(g, W, Z) in our constraint solver
corresponds to a CSP1 whose solution is a valid instantia-
tion of Z. The completeness on the calling contexts and the

1Constraint Satisfaction Problem

6

determinism of the specifications guarantee the existence of
a unique instantiation ofZ respecting the CSP for a given
instantiation ofW .

4.1 AMP strategy

The first proposed strategy is the most natural: it corre-
sponds to the coverage of all the feasible paths of the mixed
graph, i.e. all feasible paths of the function under test and
all the functional domains for every calling context of the
called functions. We shall call the associated criterion “all-
mixed-paths” (AMP).

The application of this criterion is immediate here: we
submit the mixed graph to the standard selection strategy of
PathCrawler. The mixed graph is then totally covered by a
depth-first exploration.

However, if we only need to cover all the paths in the
calling function, then the AMP criterion sometimes results
in redundant tests. These are the tests which cover mixed
paths differing only in their abstract parts issued from spec-
ifications of called functions. They exercise different func-
tional domains within a called function but are identical
within the calling function.

4.2 MCMG strategy

To treat all-paths coverage of the calling function
only, we introduce our second criterion, called “minimal-
coverage-of-mixed graph” (MCMG). This requires 100%
coverage of all feasible paths of the calling function, with-
out imposing any particular coverage of the called function.

The application of this new criterion requires a modifi-
cation of PathCrawler’s test selection. Where the strategy
would usually explore a new functional domain of a called
function, two scenarios are now possible. The choice de-
pends on whether all path suffixes after the return from the
called function are already covered for the context of the
current call. If this is the case, then we do not need to ex-
plore any more functional domains in this calling context.
Instead, we go back up the path predicate to negate a condi-
tion preceding the function call, as for the prefixMaxC2 in
Figure 4. Otherwise, we explore a new functional domain
in the called function but limit the exploration of the path
suffixes after return from the calling function to the suffixes
which have not yet been covered in this calling context (as
for MaxC3 in Figure 4).

5 Discussion and Results

In this section, we will not present new benchmarks
but will illustrate the advantages of our approach both on
our motivating example and on other examples taken from

e

s

e

s
PC1

MaxC1

PC2

MaxC2

e

s

e

s

unsatisfiable

MaxC3

PC3 PC4

Figure 4. Second strategy: criterion MCMG

[God07]. This paper describes how SMART replaces func-
tion calls by function summaries. These are logical disjunc-
tions of path predicates (together with the path calculation).
DART[GKS05] is run on the calling function and when a
call of a particular function is encountered for the first time
then a function summary is built. This is done by running
DART on the called function in this calling context and
forming the disjunction of the path predicates and calcu-
lations for every path covered. At the next call of the same
function, if the concrete input values of the called function
respect one of the path predicates in the summary, then the
function call is replaced by this summary. If not, a new
function summary is built for this calling context. Thus,
at the next encountered function call, the method will com-
pare the new concrete input values with each of the function
summaries.

7

This approach avoids repeating the exploration of the
same called function when it is called several times with
compatible calling contexts. However, it imposes the ma-
nipulation of potentially enormous disjunctions of con-
straints which risk being intractable (even for modern SAT
solvers). Furthermore, according to our understanding of
[God07], by testing for intersection of calling contexts
rather than inclusion, SMART runs the risk of incomplete
coverage of the calling function, as shown on our example
in the next Section.

5.1 Our motivating example

Let us recall our motivating example, whose code was
presented at the beginning of this paper in Example 1.1
and its specification in Example 3.1. The calling function
apply f contains 6 different execution paths, 5 of which
contain a call to the functionget inter. Note that only 4
paths are feasible: the two paths evaluating the condition at
lines 30 and 40 as true are infeasible.

The called functionget inter contains 10 feasible
paths: 2 paths outside thefor loop and 8 paths in the loop.
We thus have 31 possible execution paths if the called func-
tion is inlined, of which only 16 are feasible. We will not
enumerate these test-cases but they correspond to the pos-
sible combination of feasible structural paths of the calling
function and feasible structural paths of the called function.

If we observe the specification of the called function,
there are only 3 functional domains. The corresponding
mixed graph, shown in Figure 3, contains 16 different mixed
paths (not the same as the 16 feasible paths above). We have
already noted the presence of dead code in Example 1.1, it
means there are infeasible mixed paths.

With the AMP strategy, we obtain 5 test cases. Figure 5
shows the simplified mixed graph ofapply f (cf. Figure
3) and the mixed paths which are covered.

In Figure 5, we can observe that only one of the two
paths 4 and 5 is needed to obtain the coverage of all struc-
tural paths of the calling function. Indeed, with our second
strategy MCMG, we obtain only 4 test cases, covering only
paths 1 to 4 of Figure 5.

In this previous example, the called function is called in
two different contexts. If the first calling context to be ex-
plored is the one with the more restricted domain (at line
29 in Example 1.1), then SMART would use the summary
of this first context for the exploration of the second one (at
line 36). But as the first calling context is more restricted,
two paths in the called function which are feasible in the
second calling context will not be represented in the func-
tion summary. These are the paths which have true condi-
tions at line 8 and line 11. These paths in the called function
will therefore not be explored in the second calling context.
But one of these paths must be taken in the called function

Path 3

S

Path 4

Path 5

Path 2

E

Path 1

Figure 5. Mixed paths covered for apply f

in order to follow the path suffix which has a true condi-
tion at line 34. In this case, SMART would not cover paths
with this suffix. This is why SMART cannot always cover
as many paths in the calling function as those covered by
DART with function inlining.

5.2 Other examples

5.2.1 First example from [God07]

We use one of the examples applied to the method SMART
in [God07]. The code of the function under test is:

1 int err;
2 int is_positive(int x)
3 {
4 if (x>0)
5 return 1;
6 return 0;
7 }
8 void top (int s[N]){
9 int i, cnt=0;

10 err=0;
11 for(i=0;i<N;i++)
12 cnt=cnt+is_positive(s[i]);
13 if(cnt==3)
14 err=1;
15 return;
16 }

We can see that only two paths of the function under test
top are feasible while the inlining treatment of the called
functionis positive covers2N paths. Following an in-
lining treatment, we have covered this function withN =
10 and we obtain1024 test cases in2.27s cpu on Linux
2GHZ. This number of feasible paths can be explained by
2 facts: (1) two paths of the function under test corre-

8

spond to the paths verifying or not the conditional instruc-
tionif(cnt==3), (2) the loopfor contains only one fea-
sible path because this loop has a fixed number of iterations.

SMART performs only 4 runs to cover the function un-
der test : 2 runs to build the path summaries of the called
functionis positive and 2 runs using these summaries
to cover the 2 paths of the calling function.

If we apply our AMP strategy to the corresponding
mixed graph, we cover all2N paths of the mixed graph.
With N = 10, we obtain1024 test cases in2.21s cpu on
Linux 2GHZ. Our AMP strategy has a similar execution
time to that of function inlining. This is easy to explain:
the called function contains 2 structural paths and 2 pre/post
couples in its specification. The associated specification of
the called function is:

FUNCTION is_positive
/*@ requires
@ (true)
@*/
/*@ ensures
@ ((w1>w2) => (z1=1))
@ ((w1<=w2) => (z1=0))
@*/
END

We can see that this specification is similar to the implemen-
tation and provides no combinatorial benefit. We see here
that our AMP strategy is only effective if the called function
possesses more feasible structural paths than functional do-
mains.

However, if we apply the second strategy, MCMG, we
cover just the 2 test-cases corresponding to the 2 feasible
paths of the function under test. WithN = 10, we cover
2 test cases in0.09s cpu on Linux 2GHZ. Obviously, the
strategy MCMG is more effective for this example.

5.2.2 Second example from [God07]

Now, let us take another example extracted from[God07].
The called function is:

1 //locate index of first character c
2 // in null-terminated string s
3 int locate(char* s,int c){
4 int i=0;
5 while(s[i]!=c)
6 { if (s[i]==0)
7 return -1;
8 i++}
9 return i;

10 }

The inputs are a strings of maximum sizen with s[n]
zero and a characterc to be searched for in this string. The
called functionlocate contains2 ∗ n execution paths ifc
is nonzero andn paths ifc is zero. The function under test
is:

1 void top(char *input){// assume input is null-terminated
2 int z;
3 z=locate(input,’a’);
4 if (z==-1) return -1;
5 if (input[z+1]!=’:’) return 1;
6 return 0;
7 }

The calling functiontop contains 3 possible execution
paths. With an inlining method, there are3 ∗ n− 1 feasible
paths.

SMART systematically executes all possible paths of
these functions separately. For the called functionlocate,
SMART builds a summary which is the disjunction of2 ∗ n

terms for the2 ∗ n paths. Next, SMART tries to explore the
3 paths of the function under testtop using the summary to
replace the called function. For this example, SMART ex-
ecutes2n + 3 runs so the number of runs grows in a linear
way with the size of the input string.

Using our AMP strategy, the called function is replaced
by the corresponding abstract graph which contains only2
abstract paths: the called function possesses2 functional
domains (the string does or does not contain the character).
With this strategy, we would execute only 3 feasible mixed
paths. One path leads to the execution of the return instruc-
tion at line 4 of the calling functiontop. Another path leads
to the return instruction at line 5 of the function and the last
path leads to the return at line 6. For each of these paths,
only one functional domain can be activated. The3 mixed
paths covered by the AMP strategy correspond exactly to
the3 feasible paths of the function under test so the MCMG
strategy executes the same test cases.

In our approach, the number of cases to be considered
depends on the number of pre/post cases in the specification
instead of the number of feasible paths of the called func-
tions. If there are very many paths then with a declarative
specification the user can often limit the complexity of test-
case generation. This can be seen as an advantage of our
approach. The other advantage being that it preserves the
completeness of the coverage of paths in the calling func-
tions.

6 Conclusion

Benchmarking on a range of examples is still in
progress. However, the experiments described in this
paper showed decisive results. The exploration of the
mixed graph according to the AMP criterion shows that
our objectives are reached: the coverage of the function
under test is maintained and the exploration of the called
functions is limited2. The application of the MCMG
criterion on the mixed graph allows the exploration of the
called functions to be limited even further by eliminating
the test-cases which are not needed for the coverage of the
calling function alone.

We have seen an example of grey-box testing as the joint
use of specification and code source for test generation.
This technique could be put to other uses.

2According to the reasonable hypothesis that there are more structural
paths than functional domains

9

For example, we can envisage the resolution of
the “missing path” problem. A missing path is a
functionality of the specification which “has not been
implemented”[GG75]. In fact, as soon as we dispose of
a precise specification, this problem is addressed by con-
formance testing. In our case, the idea would be to ap-
ply the PathCrawler strategy on each input subdomain de-
fined in the specification (i.e. from eachDom(Pre(g, W)∧
Di(g, W))). This would ensure a structural coverage of
every identified functional subdomain. The corresponding
postconditions would be used to set up an automatic oracle
during PathCrawler exploration.

The AMP strategy covers all the functional domains of
the called functions for each of their call contexts. This
is why it could also be used instead of unit testing of the
called functions. This point would allow us to dispense with
our basic hypothesis that called functions are already tested.
Indeed, the AMP strategy allows the implementation of a
technique of in-context testing for the called functions. An
in-context oracle can be built from a comparison between
the outputs obtained at each execution and those calculated
by the abstract graph.

Finally, assuming we do not dispose of a convenient
specification for called functions, the exploration of their
source code could be limited with a strategy inspired from
the MCMG strategy. The idea is to cover only those paths
in the called functions which are necessary for the complete
coverage of the paths of the calling function.

References

[BM93] W. G. Bently and E. F. Miller. Ct coverage–initial results.
Software Quality, 2(1):29–47, 1993.

[CGP+06] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and
D. R. Engler. Exe: automatically generating inputs of death.
In ACM Conf. on Computer and Communications Security, pp.
322–335, 2006.

[FK96] R. Ferguson and B. Korel. The chaining approach
for software test data generation.ACM Trans. Soft. Eng.
Methodol., 5(1):63–86, 1996.

[GBR00] A. Gotlieb, B. Botella, and M. Rueher. A CLP frame-
work for computing structural test data.LNCS, 1861:399–413,
July 2000.

[GD07] V. Ganesh and D. L. Dill. A decision procedure for bit-
vectors and arrays. InCAV, pp. 519–531, 2007.

[GG75] J. B. Goodenough and S. L. Gerhart. Toward a theory
of test data selection.IEEE Trans. Soft. Eng., 1(2):156–173,
1975.

[GKS05] P. Godefroid, N. Klarlund, and K. Sen. DART: Di-
rected automated random testing. InACM SIGPLAN 2005
Conf. PLDI’05, pp. 213–223, 2005.

[GMS99] N. Gupta, A. P. Mathur, and M. L. Soffa. UNA based it-
erative test data generation and its evaluation. InProc. ASE’99,
pp. 224–232, 1999.

[GN97] M. J. Gallagher and V. Lakshmi Narasimhan. Adtest: A
test data generation suite for ada software systems.IEEE Trans.
Soft. Eng., 23(8):473–484, 1997.

[God07] P. Godefroid. Compositional dynamic test generation.
In Proc. POPL ’07, pp. 47–54, 2007.

[Hoa69] C.A.R. Hoare. An axiomatic basis for computer pro-
gramming.Com. of the ACM, 12(10):pp. 567–580, 1969.

[Kor96] Bogdan Korel. Automated test data generation for pro-
grams with procedures. InProc. ISSTA’96, pp. 209–215, 1996.

[Lan06] CIL : C Intermediate Language.CIL - Infrastructure
for C Program Analysis and Transformation. 2005/2006.
http://manju.cs.berkeley.edu/cil/.

[MA00] B. Marre and A. Arnould. Test sequences generation
from Lustre descriptions : GATeL. InProc. ASE’00, pp. 229–
237, 2000.

[MM98] C. C. Michael and G. McGraw. Automated software
test data generation for complex programs. InProc ASE’98,
pp. 136–146, 1998.

[Mou07] P. Mouy.Automatisation du test de tous-les-chemins en
présence d’appels de fonction. PhD thesis, Université d’Evry
Val d’Essonne, 2007.

[PM87] R. E. Prather and J. P. Myers, Jr. The path prefix software
testing strategy. IEEE Trans. on Soft. Eng., 13(7):761–766,
1987.

[SD01] N. Tran Sy and Y. Deville. Automatic test data generation
for programs with integer and float variables. InProc. ASE’01,
pp. 13–21, 2001.

[SMA05] K. Sen, D. Marinov, and G. Agha. Cute: A concolic
unit testing engine for c. InProc. ESEC/FSE’05, pp. 263–272,
2005.

[WMM03] N. Williams, B. Marre, and P. Mouy. On-the-fly gen-
eration of structural tests for C functions. InProc. ICSSEA’03,
2003.

[WMM04] N. Williams, B. Marre, and P. Mouy. On-the-fly gen-
eration of k-paths tests for C functions : towards the automation
of grey-box testing. InProc. ASE’04, pp. 290–293, 2004.

[WMMR05] N. Williams, B. Marre, P. Mouy, and M. Roger.
Pathcrawler : Automatic generation of path tests by combining
static and dynamic analysis. InProc. EDCC’05, pp. 281–292,
2005.

[WNJ97] M. Wallace, S. Novello, and J.Schimpf.ECLiPSe: A
platform for Constraint Logic Programming. IC-Parc, Imperial
College, London, 1997.

10

