
© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for

all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.

Structural Testing with PATHCRAWLER. Tutorial Paper

Nicky Williams Nikolai Kosmatov
CEA, LIST, Software Safety Laboratory, PC 174, 91191 Gif-sur-Yvette, France

E-mail: firstname.lastname@cea.fr

Abstract—Automatic testing tools allow huge savings but
they do not exonerate the user from thinking carefully about
what they want testing to achieve. To successfully use the
PathCrawler-online structural testing tool, the user must pro-
vide not only the full source code, but also must set the test
parameters and program the oracle. This demands a different
“mindset” from that used for informal functional-style manual
testing, as we explain with the help of several examples.

I. THE PATHCRAWLER TOOL

PATHCRAWLER [1] is an automatic tool for structural unit
testing of C code developed at CEA LIST. The PathCrawler-
online web service makes a restricted version of PATH-
CRAWLER freely available for evaluation and teaching1 The
user uploads the C source code to be tested, sets the test
parameters and programs an oracle and PathCrawler-online
automatically constructs a set of test-cases which ensure
complete coverage and displays the inputs, outputs, covered
branches, path and verdict of each test-case, as well as the
infeasible paths.

PATHCRAWLER is based on the concolic or dynamic
symbolic execution method and on constraint resolution.
As constraint resolution (or satisfaction) is NP-complete,
PATHCRAWLER cannot guarantee to always cover a path,
or demonstrate its infeasibility, within a reasonable time.
When this occurs, PATHCRAWLER reports that the corre-
sponding path is probably infeasible but that this cannot be
demonstrated. This problem is usually only posed by func-
tions under test which implement numerical algorithms in
which the branch conditions involve the results of complex
calculations.

PATHCRAWLER can be used to ensure, and demonstrate,
code coverage when this is imposed by a standard. How-
ever, it can also be used even when code coverage is not
imposed, as a convenient and rigorous way of debugging
code fragments during development.

II. AUTOMATED TESTING IN PRACTICE

PathCrawler-online automatically constructs the list of
all possible effective input parameters for the uploaded
function to be tested: these include declared parameters,
global variables and the fields, elements and dimensions of
all data-structures2. PATHCRAWLER gives all these effective

1http://PathCrawler-online.com
2Pointers are not included directly, because their value is an address, but

the variables to which they point are included.

input parameters a default interval of possible values, which
corresponds to the declared C type of the parameter. Vari-
able array dimensions, including the “dimensions” of de-
referenced input pointers, are given the default interval of
0..1. This means that by default, PATHCRAWLER supposes
that pointers may be NULL or may point to an array containing
a single element. If the user does not change the test
parameters then PATHCRAWLER will construct tests which
may include any combination of values from these default
intervals.

The importance of test parameters. The user must sur-
vey the default test parameters and change them as necessary
to ensure that the tests constructed by PATHCRAWLER are
pertinent. One possible result of inappropriate test parame-
ters is that the generated tests reveal anomalies which the
user treats as evidence of a bug in the implementation but
which are actually due to an inappropriate calling context.
An example of this is the function shown in Fig. 1(a),
which should output an ordered array t3 containing the 10
elements from the two input lists t1 and t2 of 5 elements
each3. However, the algorithm used in this implementation
of Merge is only correct if t1 and t2 are ordered. If Merge is
tested with the default test parameters, it is probable4 that
PATHCRAWLER will construct test-cases in which t1 and t2

are not ordered and so t3 is not an ordered list. If the user
supplies an oracle which checks whether t3 is ordered then
these test-cases will give a failure verdict and the user may
waste time looking for a bug in the implementation of the
algorithm.

The user may decide to include in the implementation of
Merge a check that t1 and t2 are really ordered and return 1,
for example, if they are not. This would be the case if lines
5-9 of the code shown in Fig. 1(a) were un-commented.
This check would give rise to new branches in the code
and PATHCRAWLER will automatically generate new test-
cases to activate the branches returning 1. This is an example
of robustness testing which is naturally and automatically

3When input arrays have a declared dimension, as in this case, PATH-
CRAWLER sets the default dimension to the declared dimension and not to
0..1, even though the C compiler ignores the declared dimension.

4To select input values to satisfy a certain set of constraints, and cover
certain path, PATHCRAWLER selects values randomly so the actual test-case
inputs will vary each time PATHCRAWLER is run, and the order in which
the paths are covered may vary too. Below, we will refer to “probable” or
“likely” properties of the generated test-cases because of this element of
non-determinism.

a) b) c)

1 int Merge(int t1[5], int t2[5],
2 int t3[10]) {
3 int i = 0, j = 0, k = 0 ;
4 // test robustness: lines 5-9
5 /*for (i=0; i<4; i++)
6 if ((t1[i+1] < t1[i])
7 || (t2[i+1] < t2[i]))
8 return 1;
9 i = 0; */

10 while (i < 5 && j < 5) {
11 if (t1[i] < t2[j])
12 { t3[k] = t1[i]; i++; }
13 else
14 { t3[k] = t2[j]; j++; }
15 k++ ;
16 }
17 while (i < 5)
18 { t3[k] = t1[i]; i++; k++; }
19 while (j < 5)
20 { t3[k] = t2[j]; j++; k++; }
21 return 0 ;
22 }

1 int Merge(int t1[],int t2[],int t3[],
2 int l1,int l2){
3 int i = 0, j = 0, k = 0;
4

5

6

7

8

9

10 while (i < l1 && j < l2) {
11 if (t1[i] < t2[j])
12 { t3[k] = t1[i] ; i++ ; }
13 else
14 { t3[k] = t2[j] ; j++ ; }
15 k++ ;
16 }
17 while (i < l1)
18 { t3[k] = t1[i] ; i++ ; k++ ; }
19 while (j < l2)
20 { t3[k] = t2[j] ; j++ ; k++ ; }
21 return 0;
22 }

1 void Sort (int size, int * list)
2 {
3 int i, swap;
4 char done = 0;
5 int count = 0;
6 while (!done && (count < size-1)){
7 done = 1;
8 for (i=0 ; i<size-1 ; i++)
9 if (list[i] > list[i+1]){

10 done = 0 ;
11 swap = list[i] ;
12 /* missing: list[i] = list[i + 1]; */
13 list[i + 1] = swap ;
14 }
15 count++ ;
16 }
17 }

Figure 1. a–b) Two versions of merge of two sorted arrays t1, t2 into sorted array t3, and c) a buggy implementation of bubble sort.

included in the structural tests and so does not need to be
carried out separately.

However, if the user knows that this implementation of
Merge will only be called with ordered arrays, then he or she
must add a precondition to the test parameters in order to
prevent PATHCRAWLER constructing test-cases containing
unordered arrays. Preconditions can either be entered di-
rectly, using the PathCrawler-online interface, as formulae
over the input values in a subset of first-order logic, or
by including in the source code files a C function with a
particular name and signature which returns 1 if its inputs
satisfy the precondition and 0 if not.

In the previous example, Merge was correctly implemented
for ordered inputs and bad test parameters resulted in the
user wasting time diagnosing what appeared to be a bug.
Another danger of inappropriate test parameters is that,
instead of resulting in incorrect outputs, test-cases provoke
a runtime error before any outputs are generated. For an
example of this, consider the implementation of Merge in
Fig. 1(b), which accepts input arrays of any dimension. In
this example, l1 and l2 represent the number of elements in
t1 and t2. With the default test parameters, PATHCRAWLER

will construct test-cases in which t1 and t2 are either NULL or
point to an array containing a single element and l1 and l2

take any integer value. It is likely that l1 or l2 will be greater
than the dimension of t1 or t2, provoking a segmentation
fault when the test case is executed. To prevent such cases
being generated, the user must add a precondition which
ensures that l1 is always less than or equal to the dimension
of t1, l2 less than or equal to the dimension of t1 and l1+l2

less than or equal to the dimension of t3.
In this same example, the user must enlarge the interval

of dimension values for the arrays from its default value of
0..1 in order allow PATHCRAWLER to construct test-cases
in which the input arrays have more than one element and
l1 and l2 can be greater than 1. By setting the upper limits

of the dimensions of t1 and t2, the user influences how
many inter-leavings of successive elements from t1 and t2

are tested and consequently the number of paths which are
tested, because in this example the number of feasible paths
depends on l1 and l2.

Partial test coverage. Another way to limit the number
of paths which are tested, when the tested function contains
one or more loops whose number of iterations is input-
dependent, is to set the coverage criterion to all k-paths
instead of its default value of all paths. This test parameter
allows the user to specify a number, 𝑘, of loop iterations
so that PATHCRAWLER will just try to cover all feasible
paths with up to 𝑘 consecutive iterations of each loop5. This
criterion can notably be used to limit the number of tests
of functions containing loops with a number of iterations
which depends on the inputs but not on the dimensions of
any input array.

Defining the oracle. Once the user has decided on the
test parameters, he or she must turn their attention to the
oracle. PATHCRAWLER constructs a default oracle which
just returns the verdict unknown for all tests. The user should
modify the source code of this default oracle, using the
macros provided to return success or failure verdicts. To
decide the verdict, the oracle program must compare the
values which are input to the function under test to those
which the implementation returns as output6. The more
rigorous the oracle, the more likely it is that the generated
tests will detect a bug. For example, if an oracle for Merge

5In fact, PATHCRAWLER may happen to generate certain tests with more
than 𝑘 iterations of a loop, but given the already generated tests, it will
only try to generate further tests with fewer than 𝑘 iterations.

6The declared parameters of the oracle are the values of the declared
parameters of the tested function before (renamed by prefixing their name
with pre and after it is called, as well as the value returned by the
function, if it does return a value. The oracle program can also access the
values of global variables before (renamed using the same convention) and
after the execution of the function.

a) b) c)

1 int Bsearch(int A[10], int x)
2 {
3 int low = 0 ;
4 int high = 9 ;
5 int found = 0, mid ;
6 while(high > low) {
7 mid = (low + high) / 2 ;
8 if(x == A[mid])
9 found = 1 ;

10 if(x > A[mid])
11 low = mid + 1 ;
12 else
13 high = mid - 1 ;
14 }
15 mid = (low + high) / 2 ;
16 if((found != 1)
17 && (x == A[mid]))
18 found = 1 ;
19 return found ;
20 }

1 int Bsearch(int A[10], int x)
2 {
3 int low = 0 ;
4 int high = 9 ;
5 int found = 0, mid ;
6 while(high > low) {
7 mid = (low + high) / 2 ;
8 if(x == A[mid])
9 found = 1 ;

10 if(x > A[mid])
11 low = mid + 1 ;
12 else
13 high = mid - 1 ;
14 }
15 mid = (low + high) / 2 ;
16 if((found != 1)
17 && (x == A[mid]))
18 found = 0 ; // bug here
19 return found ;
20 }

1 int Bsearch(int A[10], int x)
2 {
3 int low = 0 ;
4 int high = 9 ;
5 int found = 0, mid ;
6 while(high > low) {
7 mid = (low + high) / 2 ;
8 if(x == A[mid])
9 found = 1 ;

10 if(x > A[mid])
11 low = mid + 1 ;
12 else
13 high = mid - 1 ;
14 }
15 mid = (low + high) / 2 ;
16 if((found != 1)
17 && (x >= A[mid])) // bug here
18 found = 1 ;
19 return found ;
20 }

d) e)

1 int Bsearch(int A[10], int x)
2 {
3 int low = 1 ; // bug here
4 int high = 9 ;
5 int found = 0, mid ;
6 while(high > low) {
7 mid = (low + high) / 2 ;
8 if(x == A[mid])
9 found = 1 ;

10 if(x > A[mid])
11 low = mid + 1 ;
12 else
13 high = mid - 1 ;
14 }
15 mid = (low + high) / 2 ;
16 if((found != 1)
17 && (x == A[mid]))
18 found = 1 ;
19 return found ;
20 }

1 int Spec(
2 int Pre_A[10], int A[10],
3 int Pre_x, int x,
4 int found)
5 {
6 int i, present = 0 ;
7 for(i = 0 ; i < 10 ; i++)
8 if(A[i] == x)
9 present = 1 ;

10 if(present != found)
11 return 0 ;
12 else
13 return 1 ;
14 }
15

16 int Correct(int A[10], int x)
17 {
18 int found = Bsearch(A,x) ;
19 return Spec(A,A,x,x,found) ;
20 }

Figure 2. a–d) Four versions of dichotomic search of element x in sorted array A, and e) specification function.

just checks whether the output is sorted then bugs which
prevent the output array containing all elements of the input
arrays, or which cause the input arrays themselves to be
modified, will not be detected.

Novice users often have difficulty understanding the re-
lationship between the oracle, the implementation of the
function to be tested and the precondition. For instance,
novice users sometimes want to use the oracle to check
that the precondition is respected by the test-case. This is
unnecessary: the precondition is defined separately from the
oracle specifically in order to ensure that PATHCRAWLER

will only construct test-cases which satisfy the precondition.
Some other novice users essentially copy the implementation
being tested into the oracle but this just has the effect of
comparing the implementation to itself, which will always
give a success verdict whether the outputs are correct or
not! Indeed, some functions have a natural “declarative”
oracle which is completely different to the implementation,
such as the oracle for a sorting algorithm which can check
whether the output is sorted without having to calculate
the “expected output”. In some cases, the oracle can be
a less efficient implementation of the same function. For

example, dichotomic search, which should be efficient for
sorted arrays, can be checked by an oracle which implements
the less efficient iterative search. In many real-life examples,
the oracle can be a “golden reference” of the algorithm being
implemented or a previous version of the implementation
which is called “back to back” by the oracle. However, when
none of these options are available, the user often just has to
recode the tested function in a way as different as possible
to the tested implementation or resign him- or herself to a
partial oracle which may not detect all bugs. For relatively
simple tested functions without too many paths, instead of
using an oracle, the user can manually check the symbolic
outputs and path predicate of each test-case. The symbolic
outputs are the output values expressed as a formula over
the input values and the user can check whether this formula
corresponds to the expected computation. If the symbolic
output is just a constant value, then the user can check the
path predicate, which expresses the conditions on the input
values which decided this particular output value.

Using PATHCRAWLER outputs for debugging. Indeed,
PATHCRAWLER provides a wealth of information to help
the user detect and localize any bugs. Where there is an

oracle, the first indication is the test-case verdicts. However,
the user should usually start by checking the input values
of a few test-cases to see if they seem “reasonable”: they
can reveal a faulty precondition. Then the user should check
the input and output values of the test-cases with a failure

verdict in order to ensure that it is the implementation that
is faulty and not the oracle! In some cases, the output values
indicate the source of the bug, such as when the example
of Fig. 1(c) (which contains a bug which systematically
overwrites elements in the output array) is tested. In other
cases, the paths covered by the failed cases will be the only
ones to cover a particular sequential block of instructions
and then the bug is likely to be situated in this block or in
the condition leading to it. Consider the example of a buggy
implementation of dichotomic search for a particular value
in an ordered array shown in Fig. 2(b). It is the tests which
cover paths including the true branch of the sub-condition
in line 17 which give a failure verdict.

So far, we have considered bugs which produce incorrect
outputs. Other potential types of bug are un-initialized local
variables or runtime errors such as buffer overflow or NULL

pointer de-referencing. These errors may always occur when
a particular execution path is activated, or they may only
occur when it is activated with certain input values. In
the former case, or if PATHCRAWLER happens to have
generated a test-case with input values which provoke the
error, then PATHCRAWLER will either report to the user that
the tested function crashed when executed or, if the error
does not cause the program to crash, then PATHCRAWLER

will detect it during the analysis of the path, after the test
has been executed. However, if the test-cases generated by
PATHCRAWLER do not reveal any errors of this type, it does
not necessarily mean that they are not present and would not
have been revealed by other input values.

Bypassing the limits of structural testing. PATH-
CRAWLER was designed primarily as a structural testing
tool and so the test-cases which it generates suffer from the
well-known limitations of structural testing. However, these
limitations can be reduced to some extent by novel uses of
structural testing.

Let us consider another example of a buggy implemen-
tation of dichotomic search, shown in Fig. 2(c), and first
compare random testing, functional testing and structural
testing. Random testing using the whole range of integer
values would be very unlikely to generate test-cases in
which x occurred in A so would be unlikely to detect many

bugs. Functional testing would be likely to produce 10 test-
cases in which x was present in A (one for each position
in which it might be found), and 1 test-case in which it
was not present. PATHCRAWLER creates more than 10 test-
cases in which x is present in A but also several different
examples in which the absent x is ordered compared to the
elements of A. PATHCRAWLER can therefore detect the bug

in the implementation shown in Fig. 2(c) which functional
testing may not detect. However, PATHCRAWLER often fails
to reveal the bug in Fig. 2(d) because it covers all paths
but does not “know” that the search should include the first
element in the array. This is an example of the missing path
limitation of structural testing7. To combat it, the user must
provide PATHCRAWLER with a specification of the expected
functionality of Bsearch and check whether PATHCRAWLER

can cover a path which conjoins a path in the implementation
and a path which fails to satisfy the specification. This is
achieved by adding the code shown in Fig. 2(e) to that
of Fig. 2(d) and testing the function Correct. This function
combines the implementation of Bsearch with a specification
inspired by the oracle of the previous examples of Bsearch.
The new oracle must test whether the result is 1 and the
test-case which fails is the one in which x is equal to A[0].

Similarly, PATHCRAWLER can be used to systematically
find all runtime errors by inserting extra branches in the code
at each point where such an error could occur. In trying to
cover these branches, PATHCRAWLER will try to find test-
cases which provoke runtime errors. Such branches could be
inserted automatically, for example by using the RTE plugin
of the FRAMA-C platform 8. However, it is more efficient
to run static analysis on the code first in order to detect
all certain and possible run-time errors and then use PATH-
CRAWLER to either provide a test-case or demonstrate non-
reachability of each one, such as in the SANTE prototype [2].

REFERENCES

[1] N. Williams, B. Marre, P. Mouy, and M. Roger, “PathCrawler:
automatic generation of path tests by combining static and
dynamic analysis,” in EDCC’05.

[2] O. Chebaro, N. Kosmatov, A. Giorgetti, and J. Julliand, “Pro-
gram slicing enhances a verification technique combining static
and dynamic analysis,” in SAC’12.

7Indeed the only indication of this error is the number of feasible paths
in the implementation. If the user’s test process demands justification of
the infeasibility of all uncovered paths, then some bugs may be uncovered
by close examination of the feasible and infeasible paths.

8http://frama-c.com

