
ACM COPYRIGHT NOTICE. Copyright © 2012 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored. Abstracting with credit is

permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1

(212) 869-0481, or permissions@acm.org.

Program Slicing Enhances a Verification Technique
Combining Static and Dynamic Analysis

Omar Chebaro1,2 Nikolai Kosmatov1 Alain Giorgetti2,3 Jacques Julliand2

1CEA, LIST, Software Safety Laboratory, PC 174, 91191 Gif-sur-Yvette France
2LIFC, University of Franche-Comté, 25030 Besançon France

3INRIA Nancy - Grand Est, CASSIS project, 54600 Villers-lès-Nancy France
1firstname.lastname@cea.fr, 2firstname.lastname@lifc.univ-fcomte.fr

ABSTRACT
Recent research proposed efficient methods for software veri-
fication combining static and dynamic analysis, where static
analysis reports possible runtime errors (some of which may
be false alarms) and test generation confirms or rejects them.
However, test generation may time out on real-sized pro-
grams before confirming some alarms as real bugs or reject-
ing some others as unreachable.

To overcome this problem, we propose to reduce the source
code by program slicing before test generation. This pa-
per presents new optimized and adaptive usages of program
slicing, provides underlying theoretical results and the algo-
rithm these usages rely on. The method is implemented in
a tool prototype called sante (Static ANalysis and TEst-
ing). Our experiments show that our method with program
slicing outperforms previous combinations of static and dy-
namic analysis. Moreover, simplifying the program makes it
easier to analyze detected errors and remaining alarms.

Keywords: static analysis, program slicing, all-paths test
generation, runtime errors, alarm-guided test generation.

1. INTRODUCTION
Recent research showed that static and dynamic analyses

have complementary strengths and weaknesses, and com-
bining them may provide new efficient methods for software
verification.

The method sante (Static ANalysis and TEsting) intro-
duced in [7] uses value analysis to report alarms of pos-
sible runtime errors (some of which may be false alarms),
and structural test generation to confirm or to reject them.
Unfortunately, in practice, when applied to real-sized pro-
grams, the method of [7] can time out leaving some alarms
unknown, i.e. neither confirmed nor rejected. The experi-
ments showed that test generation on the complete program
may lose a lot of time trying to cover program paths or sec-
tions of code that are not relevant to the alarms.

The main motivation of this work is to overcome this prob-
lem in order to confirm/reject more alarms in a given time.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’12 March 25-29, 2012, Riva del Garda, Italy.
Copyright 2011 ACM 978-1-4503-0857-1/12/03 ...$10.00.

A recent tool demo paper [8] mentions two simple ways to
integrate program slicing into the sante method in order to
simplify and reduce the source code before costly test gener-
ation. In this paper we thoroughly investigate and evaluate
smarter usages of program slicing to improve the method.
We develop necessary theory on alarm dependencies and
use it to determine a better synergy of the techniques. We
mainly consider the class of programs supposed to terminate
within a given time.

Another important motivation of this work is to automat-
ically provide the validation engineer with as much infor-
mation as possible on each detected error. For example,
the error can be illustrated on a simpler program, with a
shorter program path, a smaller constraint set at the erro-
neous statement, giving values for useful variables only, etc.
Most modern verification tools do not provide such infor-
mation which can considerably reduce time of analysis and
correction of the error by a software developer.

We implement our method using Frama-C [14, 10], an
open-source framework for static analysis of C code, and
PathCrawler [29, 4, 20], a structural test generation tool.

Contributions. The contributions of this paper include:
(1) new optimized and adaptive usages of program slicing,
(2) algorithm and implementation for these new usages,
(3) definition of a minimal slicing-induced cover,
(4) proof of underlying theoretical results,
(5) experimental results on real-life programs,
(6) detailed presentation of the extended sante method us-
ing value analysis, program slicing and test generation.

The short papers [7, 8] briefly described earlier versions of
sante, respectively, without program slicing, and with the
basic slicing usages (all and each) without evaluation. The
advanced usages (min and smart), the underlying theoreti-
cal results and algorithm, the evaluation and comparison of
all options with experiments on several real-life programs as
well as the detailed presentation of the method are new.

The paper is organized as follows. Sec. 2 provides neces-
sary background. Sec. 3 describes our method with various
usages of program slicing, underlying theory and implemen-
tation issues. Sec. 4, 5 and 6 respectively provide our exper-
iments, related work and conclusion.

2. PRELIMINARIES

2.1 Threatening statements, alarms and bugs
A threat is a potential runtime error provoked by the exe-

cution of some statement of a given program. Such a state-
ment is called a threatening statement. There are various

kinds of threats, for instance, division by 0, out-of-bound
array access, invalid pointers. In the present work, we only
consider two kinds of threats directly treated by our dynamic
analysis tool, namely, division by 0 and out-of-bound array
access. Sometimes invalid pointer errors may be treated as
out-of-bound array access, but the general case of invalid
pointer errors is not considered here.

Value analysis is one of the existing techniques to detect
threats. Based on abstract interpretation [9], it starts from
an entry point specified by the user in the analyzed pro-
gram, unrolls function calls and loops, and computes over-
approximated sets of possible values for the program vari-
ables at each statement. Then it uses these values to prove
the absence of some threats and to report some others as pos-
sible. When the risk of a runtime error cannot be excluded,
value analysis reports a threat. Such a threat detected and
reported by value analysis will be called an alarm. When
the risk of a runtime error is excluded, no alarm is reported.
Essentially, an alarm is a pair containing the threatening
statement and the potential error condition.

The value analysis plugin of Frama-C identifies the threat-
ening statement and marks it by a special annotation repre-
senting the alarm. Informally speaking, for instance, for the
statement x=y/z;, the plugin emits “Alarm: z may be 0!” if
0 is contained in the superset of values computed for z. For
the last statement in int t[10]; . . . t[n]=15; the plugin
emits “Alarm: t+n may be invalid!” when it cannot exclude
the risk of out-of-bound index n.

Some of the detected threats may not appear at runtime
because of the over-approximation. An alarm that cannot
occur at runtime is called a false alarm. An error, or a bug, in
a program p is a threat for which there exist some inputs for
p that activate the corresponding threatening statement and
confirm the threat. Notice that an erroneous behavior does
not necessarily result in a program crash, when for instance
an out-of-bound array access leads by chance to another
accessible user memory location, but we still consider such
cases as bugs.

2.2 Dependence-based program slicing
Program slicing [28] is a program transformation tech-

nique for extracting an executable subprogram, called a slice,
from a larger program. A slice has, in a certain sense, the
same behavior as the original program with respect to the
slicing criterion. A classical slicing criterion is a pair com-
posed of a statement and a set of program variables. The
slicing plugin of Frama-C accepts various kinds of other slic-
ing criteria, e.g., a set of statements. Dependence-based pro-
gram slicing is based on dependency analysis which includes
computation of the program dependence graph (PDG) [13]
showing dependence relations between program statements,
and interprocedural dependency analysis allowing to deal
with function calls. The Frama-C slicing plugin provides
an implementation of dependence-based slicing.

Two different kinds of dependencies are distinguished: data
and control dependencies (see e.g. [1]). Let us denote by
; the reflexive-transitive closure of the relation of data or
control dependency. In other words, l1 ; l2 if l1 = l2, or
if the execution of l2 depends (directly or via intermediate
statements) on the execution of l1. This relation is not nec-
essarily symmetric: we may have l1 ; l2 without l2 ; l1.
For instance for lines 6 and 7 of Fig. 1, we have 6 ; 7 but
7 6; 6.

0 int hasPassed (int ∗ grades , int n){
1 int i , pass = 1 , sum = 0 , average ;
2 for (i =0; i<=n ; i++)
3 i f (grades [i]<7) // alarm1
4 pass = 0 ;
5 for (i =0; i<=n ; i++)
6 sum = sum + grades [i] ; // alarm2
7 average = sum/n ; // alarm3
8 i f (average < 10)
9 pass = 0 ;
10 return pass ;}

Figure 1: Example: the function hasPassed

We denote by labels(p) the set of labels of statements of
a program p. Let L be a subset of labels(p). Basically, in
dependence-based slicing techniques (see e.g. [25, Sec. 2.2]
and [1, Def. 4.6]), the slice of p with respect to L, denoted
slice(p, L) or pL, is defined as the subprogram of p containing
the following statements

labels(pL) = { l ∈ labels(p) | ∃ l′ ∈ L, l ; l′ }. (1)

For a singleton L = {l}, the slice pL is also denoted pl.
Notice that since ; is reflexive, L ⊆ labels(pL) and l ∈
labels(pl).

3. THE SANTE METHOD
This section explains how the sante method (see Fig. 2)

combines value analysis, program slicing and dynamic anal-
ysis for C program debugging. We illustrate it on the exam-
ple of the function hasPassed presented in Fig. 1. Given the
list of grades of a student and their number, this function
determines whether the student passes or fails the semester.
If any grade is less than 7, or the average is less than 10, the
student fails, otherwise he/she passes.

The inputs of sante are a C program p and its precon-
dition which defines value ranges for acceptable inputs of p
and relationships between them. For instance we define the
precondition for the function hasPassed as:

n > 0 and grades contains n integers between 0 and 20. (2)

At the first step (see Fig. 2), the value analysis proves the
absence of errors for some potential threats and computes a
set of alarms A = alarms(p) reporting the remaining threats.
We assume A 6= ∅ (otherwise all threats are safe). Figures 3
and 5 illustrate the Slice&Test step with different options
detailed in Sec. 3.3 and 3.6. Basically, the Slice&Test op-
tions determine which and how many simplified programs
should be generated and sent to dynamic analysis. Accord-
ing to the given Slice&Test option and the structure of de-
pendencies in A, the slicing step produces one or several
simplified versions of p, each of them containing a subset of
alarms that can be triggered. For advanced options, depen-
dency analysis is explicitly called first, otherwise it is called
by the first dependence-based program slicing.

Finally, for each simplified program, dynamic analysis (de-
tailed in Sec. 3.2) tries to activate each potential threat. This
step produces for each alarm a diagnostic that can be safe

for a false alarm, bug for an effective bug confirmed by some
input state, or unknown if it does not know whether this
alarm is an effective error or not.

3.1 Value analysis
The exhaustive list of potential threats in a given program

p (with a precondition) includes all statements containing
a potentially risky operation such as a division or an array

Program p Precondition

Value Analysis

p, A = alarms(p)

Slice&Test
Option: none,
all, each,
min, smart

Diagnostic

Figure 2: Overview of the sante method

access. The absence of errors for some of them can be estab-
lished statically as explained in Sec. 2.1. Therefore, sante
starts by applying value analysis (VA) to eliminate as many
potential threats as possible. Our implementation uses the
VA plugin [6] of Frama-C.

Each statement receives in Frama-C a unique implicit
label even when there is no explicit label in the C code.
For convenience, we identify the statement with this unique
label. We denote by la (the label of) the threatening state-
ment of alarm a and, in our examples, by k (the label of)
the statement at line k. An alarm a is seen as a pair (la, ca)
containing the threatening statement la and the potential
error condition ca of a. This condition contains variables
referenced (read) at the threatening statement la. The er-
ror reported by the alarm a occurs at la if and only if ca
is satisfied just before the execution of la. Notice that for
both kinds of threats considered in this paper (division by
0 and out-of-bound array access), the presence of an error
is determined by the values of variables referenced at the
threatening statement la.

It will be convenient to assume that each statement is
the threatening statement for at most one alarm. It simpli-
fies the argument without lack of generality: one can either
replace several alarms (l, c1), (l, c2), . . . , (l, ck) on the same
threatening statement by the alarm (l, c1 ∨ c2 ∨ · · · ∨ ck),
or replace each complex statement by several simpler ones
with at most one potential threat using auxiliary variables.

For the program of Fig. 1, value analysis returns the set
A = alarms(hasPassed) containing the three alarms a1 =
(3, i < 0 ∨ i > n), a2 = (6, i < 0 ∨ i > n) and a3 =
(7, n = 0). Notice that all the three are bugs since the
index i may be out-of-bound (equal to n) at lines 3 and 6,
and n = 0 allowed by the precondition (2) is possible at line
7.

3.2 Dynamic analysis
Let us first define a dynamic analysis function DA.

Definition 1. Let p be a program and A be a set of
alarms present in p. The dynamic analysis function DA
applied to p computes a diagnostic function on A which as-
sociates to each alarm a ∈ A one of the following results:
1. a pair (bug, s) for some state s, that means that an error
for a occurs in p when executed on the input state s,
2. safe, that means that there is no error in p for a,
3. unknown, that means that we do not know if there is one.

We say that an alarm is classified if its diagnostic is bug

or safe. In particular, the function DA returns (bug, s) for
an alarm a = (la, ca) if and only if there is an execution
path (l1, s1), . . . , (lk, sk), . . . , where si is the state before
the execution of li, s1 = s, lk = la and the error condition

ca is satisfied on the state sk, that is, the error reported by
a really occurs at the execution of la on sk.

A possible implementation of DA uses the so-called con-
colic all-paths testing (see e.g. [19]). The chosen tool must
guarantee that when test generation terminates normally
and does not cover some program path, there exists no in-
put state executing this path. (It is not true for tools that,
unlike PathCrawler, approximate path constraints.)

Technically, in order to force test generation to activate
potential errors on each feasible program path in p, we add
special error branches into the source code of p in the fol-
lowing way. For each alarm a = (la, ca), the threatening
statement la, say threatStatement; is replaced by the fol-
lowing branching statement:

i f (ca) e r r o r () ; else threatStatement ;

Test generation is then executed for the resulting C program
denoted p′. We call this technique alarm-guided test gener-
ation. If the errror condition is verified in p′, i.e. a runtime
error can occur in p, the function error() reports the error
and stops the execution of the current test case. If there is
no risk of runtime error, the execution continues normally
and p′ behaves exactly as p. If all-paths test generation on
p′ terminates without covering some program path, there is
no input state executing this path in p.

In our implementation, we use the PathCrawler tool [4]
which generates tests for all-paths criterion, or for the k-
path criterion, restricting the generation to the paths with
at most k consecutive iterations of each loop. Its method
is similar to the concolic testing, also called dynamic sym-
bolic execution. The user provides the C source code of the
function under test. The generator explores program paths
in a depth-first search using symbolic and concrete execu-
tion. The transformation of p into p′ adds new branches
for error and error-free states so that PathCrawler algo-
rithm will automatically try to cover error states. For an
alarm a, PathCrawler may confirm it as a bug when it
finds an input state and an error path leading to the bug.
PathCrawler may also prove that the alarm is safe when
all-paths test generation on p′ terminates without activating
the corresponding threat. When all-paths test generation on
p′ does not terminate, or when an incomplete test coverage
criterion was used (e.g. k-path), no alarm is classified safe.
Finally, all alarms that are not classified as bug or safe re-
main unknown.

DA will be often applied to several slices pj of p, returning
a diagnostic Diagnosticj for the alarms of p present in pj .
Then the final Diagnostic for an alarm a ∈ A is defined as
safe (resp. (bug, s)) if at least one Diagnosticj classifies a
as safe (resp. (bug, s)), otherwise it is set to unknown.

3.3 Basic Slice & Test options
In this section we present the basic Slice&Test options:

none, all and each. Let A be the set of alarms of p.
Option none: The program p is directly analyzed by dy-

namic analysis without any simplification by program slic-
ing. The earlier version of the santemethod presented in [7]
was limited to this unique option. Its main drawback is that
dynamic analysis on a large non-simplified program may
take much time or not terminate, leaving a lot of alarms
unknown.

Option all : In this option presented in Fig. 3a, program
slicing is applied once and the slicing criterion is the set A
of all alarms of p. Then dynamic analysis is applied to pA.

p, A

Select all

Slice

pA

A

Dynamic Analysis

a)

Diagnostic

p, A

Select each

Slice Slice

pa1
pan

{a1} {an}

. . .

Dynamic Analysis

b)

Diagnostic

Figure 3: Basic Slice&Test options: a) all, b) each

The advantages of this option are clear. We obtain one
simplified program pA containing the same threats as the
original program p. The slicing operation is executed only
once. Dynamic analysis is executed only once and runs faster
than for p since it is applied to its simplified version pA.

However, since the program pA contains all alarms present
in A, dynamic analysis may time out because some alarms
may be complex or difficult to analyze. In this case, alarms
which are easier to classify are penalized by the analysis of
other, more complex alarms, and finally many alarms may
remain unknown. To address this drawback, we introduce
the option each.

Option each: Assume A = {a1, a2, . . . , an}. In this op-
tion (see Fig. 3b), program slicing is performed n times, pro-
ducing a simplified program pai with respect to each alarm
ai. Then dynamic analysis is called to analyze the n result-
ing programs pai .

The advantage of this option is producing for each alarm
ai the minimal slice pai preserving the threatening statement
of ai. Therefore, each alarm is analyzed (as much as pos-
sible) separately by dynamic analysis, so no alarm remains
arbitrarily penalized by another one. Dynamic analysis for
each slice pai runs faster than for p and has more chance to
classify ai within a given time.

Among the drawbacks of this option, notice first that pro-
gram slicing is executed n times and dynamic analysis is ex-
ecuted for n programs. Moreover, one slice may include or
be identical to another one. In these cases, dynamic analysis
for some of the pai is waste of time. This is due to (mutual)
dependencies between threats. We study these dependen-
cies in Sec. 3.4 and take advantage of them in additional
Slice &Test options in Sec. 3.6.

3.4 Threat dependencies
The results of this section hold for the whole set of all

alarms of p and for any of its subsets. Let A ⊆ alarms(p)
be a set of alarms of p. Recall that an alarm a is seen
as a pair (la, ca) containing the threatening statement and
the potential error condition of a. We say that an alarm
a′ ∈ A depends on another alarm a ∈ A if la ; la′ , i.e. the
threatening statement la′ of a′ depends on the threatening
statement la of a, and we also write a ; a′. The program
slice with respect to an alarm a is defined as the slice with
respect to the threatening statement la of a, and we write
pa = pla . Similarly, the program slice with respect to a set
of alarms A is defined as the slice with respect to the set of
threatening statements of A, i.e. pA = slice(p, {la | a ∈ A}).

•a1 • a2

• a3

a) b) Slicing criteria for each option
all: {a1, a2, a3}
each: {a1}, {a2}, {a3}
min: A0 = {a1}, A1 = {a2, a3}

smart: A0
1 = {a1}, A

0
2 = {a2, a3}

and if a2 still unknown, A1
1 = {a2}

Figure 4: Slice&Test step for function hasPassed: a)
alarm dependencies, b) slicing criteria.

We assumed that each statement is the threatening state-
ment for at most one alarm. So, for simplicity of notation,
when the error condition is not referred, we will identify an
alarm a ∈ A with the corresponding threatening statement
la. We extend this convention to sets of alarms by consid-
ering them also as sets of statement labels. For instance,
when a = (l, c) is an alarm in A, we write a ∈ A and l ∈ A
interchangeably, without any risk of confusion.

When two alarms a, a′ ∈ A are independent, program
slicing with respect to a will eliminate a′ in the slice. But
in most cases, alarms are not all independent, and a may
depend on some other a′. By definition (1) of a slice, the
set labels(pa) ∩ A contains the threatening statements of A
which survive in pa. Since a ∈ labels(pa), we have A =⋃

a∈A labels(pa) ∩A.
Let A′ ⊆ A. We say that the subset A′ defines a slicing-

induced cover of A if the family (labels(pa) ∩ A | a ∈ A′) is
a cover of A, i.e. A =

⋃
a∈A′ labels(pa) ∩ A. We call such a

cover (labels(pa) ∩A | a ∈ A′) the slicing-induced cover of A
defined by A′. In such a cover, each covering set labels(pa)∩A
is non-empty. We define the notion of an end alarm in (A,;
) as follows: e ∈ A is an end alarm in A if for any a ∈ A with
e ; a we have a ; e. In other words, an end alarm has no
other outgoing dependencies than mutual ones. Since A is
finite, it is easy to see that any a ∈ A has a dependent end
alarm e ∈ A i.e. a ; e. We denote by ends(A) the set of
end alarms of A.

Let us consider the relation a ∼ a′ of mutual dependency
defined as a ; a′ and a′

; a. It is an equivalence relation in
A whose equivalence classes are maximal subsets of mutually
dependent alarms in A. We denote by a the equivalence class
of a. Lemma 1(a) shows that if an equivalence class contains
an end alarm e ∈ A, then all its elements are end alarms.
We denote by ends(A/∼) the set of equivalence classes of
end alarms. Other useful properties of end alarms and slices
are given in the following lemma.

Lemma 1. Let A ⊆ alarms(p) be a set of alarms of p.
(a) If e is an end alarm in A than every element a of its
equivalence class e is an end alarm in A too.
(b) If L ⊆ A and e is an end alarm in A that survives in
the slice pL, then e ∼ l for some l ∈ L.
(c) If a ∈ A and e is an end alarm in A that survives in the
slice pa, then e ∼ a.
(d) If a ∼ a′ are two equivalent alarms in A, then pa = pa′ .
(e) If a ∈ A and A′ = labels(pa) ∩ A, then pa = pA′ .

Proof. (a) Let e be an end alarm in A and a ∈ e. Since
a ∼ e, we have a ; e and e ; a. Suppose a has a dependent
alarm a′ ∈ A i.e. a ; a′. By transitivity, we have e ; a′.
Since e is an end alarm, a′

; e, so by transitivity again, we
have a′

; a. It follows that a is an end alarm in A too.
(b) Let L ⊆ A and e be an end alarm in A with e ∈

labels(pL). By definition (1) of pL, there exists l ∈ L such
that e ; l. Since e is an end alarm, l ; e, so e ∼ l as

required.
(c) Immediately follows from (b) for L = {a}.
(d) Follows from the definition (1) for slices pa and pa′ .
(e) Follows from the definition (1) for slices pa and pA′ .

We can now state the main result of this section.

Theorem 2. Let A ⊆ alarms(p) be a set of alarms of the
program p. There exists a unique minimal slicing-induced
cover of A. That is, there exists a subset A′ ⊆ A such that
(a) A =

⋃
a∈A′ labels(pa) ∩ A, i.e. A′ defines a slicing-

induced cover of A,
(b) if some subset A′′ ⊆ A defines another slicing-induced
cover of A, then card(A′′) > card(A′) (i.e. minimality of
the number of covering sets).
(c) if A′′ ⊆ A and (labels(pa) ∩ A | a ∈ A′′) is another min-
imal slicing-induced cover of A, the covering sets of both
covers are identical.

Proof. (a) We show first that there exists a slicing-
induced cover of A. Choose one representative ei ∈ ends(A)
in each equivalence class of end alarms ti ∈ ends(A/ ∼
). Let A′ be the set of these representatives, say k =
card(ends(A/∼)) and A′ = {e1, e2, . . . , ek}. We claim that
A′ defines a slicing-induced cover of A. Indeed, any a ∈ A
has a dependent end alarm e ∈ A, whose equivalence class
e has a representative ej ∈ A′. Since a ; e and e ; ej , by
transitivity we have a ; ej , hence a ∈ labels(pej) ∩ A. It
follows that A =

⋃
a∈A′ labels(pa) ∩A.

(b) Let us now show the minimality of the number of
covering sets in the slicing-induced cover of A defined by
A′. Suppose the subset A′′ ⊆ A defines another slicing-
induced cover of A, i.e. A =

⋃
a∈A′′ labels(pa) ∩ A. For

any j ∈ {1, 2, . . . , k}, we can find aj ∈ A′′ such that ej ∈
labels(paj)∩A. Since ej ∈ labels(paj) and ej is an end alarm
in A, we have ej ∼ aj by Lemma 1(c). In other words,
(a1, . . . , ak) is another list of representatives for the differ-
ent equivalence classes of end alarms (e1, . . . , ek), hence the
elements a1, a2, . . . , ak are all different. We found at least k
different elements a1, a2, . . . , ak in A′′, therefore card(A′′) >
k = card(A′).

(c) Finally we show the uniqueness of minimal slicing-
induced cover of A. Assume A′′ ⊆ A and (labels(pa)∩A | a ∈
A′′) is another minimal slicing-induced cover of A. The proof
above showed that A′′ contains a subset {a1, a2, . . . , ak}
where any aj is another representative for the class of end
alarms ej and the aj are all different. Applying the mini-
mality for the minimal slicing-induced cover defined by A′′

we obtain card(A′) > card(A′′), so {a1, a2, . . . , ak} = A′′

and card(A′) = card(A′′). Since aj ∼ ej , by Lemma 1(d)
the covering sets of the both covers are identical

labels(pej) ∩ A = labels(paj) ∩A

for any j ∈ {1, 2, . . . , k}, that finishes the proof.

3.5 Computing a minimal slicing-induced cover
Let A = {a1, a2, . . . , an} be the set of alarms of p. We

actually proved in Th. 2 that any minimal slicing-induced
cover of A is defined by a complete set of representatives of
the classes of end alarms, and its covering sets are uniquely
defined (up to the order). A complete set of representatives
of the classes of end alarms can be found as follows.
(a) Using dependency analysis, compute (intra- and inter-
procedural) dependencies for each alarm ai, in particular,

p, A

Dependency Analysis

p, A, ;

Select min

Slice Slice

pA1
pAk

A1 Ak

. . .

Dynamic Analysis

a)

Diagnostic

p, A

A0 := A; i := 0

Dependency Analysis

p, Ai, ;

Select min

Slice Slice

Dynamic Analysis

p
Ai

1

p
Ai

ki

Ai+1

Diagnostici

Refine

Ai
1

Ai
ki

. . .

b)

Diagnostic

i := i + 1

Ai+1 = ∅
Ai+1 6= ∅

Figure 5: Advanced Slice&Test options: a) min, b)
smart

find the alarms aj such that aj ; ai. It gives the depen-
dence graph (A,;) (see the first step in Fig. 5).
(b) Identify the end alarms of (A,;).
(c) Select a complete set of representatives e1, . . . , ek of the
classes of end alarms of A.

Notice that step (a) is already included in the option
each where program slicing for each alarm ai calls intra-
and inter-procedural dependency analysis. In practice, (a)
is done very efficiently: in all our experiments, program
slicing took less than 1 sec., while test generation took the
greatest amount of time. The additional steps (b) and (c)
(represented by the “Select min” step in Fig. 5) have only
quadratic complexity in the number of alarms n. End alarms
are found by definition (by examining dependencies between
each alarm with each other). Representatives of the classes
of end alarms can be found by a loop selecting any not-yet-
marked end alarm and marking its dependent end alarms
as already represented. When the graph (A,;) is already
available, recalculating a minimal slicing-induced cover for
a subset A′ ⊂ A is also quadratic.

We are ready to show how to diminish costly calls of DA
of the option each with only polynomial additional work.

3.6 Advanced Slice & Test options
This section proposes new optimized options based on

alarm dependencies. Let A be the set of alarms of p.
Option min : This option (see Fig. 5a) calls DA on k

slices pA1
, pA2

, . . . , pAk
obtained by program slicing for the

covering sets A1, A2, . . . , Ak of a minimal slicing-induced
cover of A. Technically, we select a complete set of rep-
resentatives e1, . . . , ek of end alarms of A and take the slices
pei . By Th. 2 the covering sets are Ai = labels(pei) ∩ A,
and we have indeed by Lemma 1(e) pei = pAi . Fig. 4 shows
the alarm dependencies and slicing criteria for the running
example.

If all alarms are dependent then the optionmin is identical

module
threats

all-threats DA VA sante none sante all sante each sante min sante smart
function � ? � ? � ? � � ? � � ? � � ? � � ? �

1
libgd

15
0 14 1 12 0 11 1 0 11 1 11 0 1 11 0 1 11 0 1

gdImageStringFTEx TO 1s TO TO 1h 32m52s 32m16s 32m16s

2
Apache

12
0 9 3 12 0 9 3 0 9 3 4 5 3 0 9 3 4 5 3

get tag TO 1s TO TO 3m24s+5TO 1TO 54s+1TO

3
polygon

29
27 0 2 10 8 0 2 8 0 2 8 0 2 8 0 2 8 0 2

main 5m33s <1s 1m31s 1m20s 7s 7s 7s

4
rawcaudio

10
0 10 0 2 0 2 0 0 2 0 1 1 0 0 2 0 1 1 0

adpcm decoder TO <1s TO TO 5s+1TO 1TO 5s+1TO

5
eurocheck

19
18 0 1 5 4 0 1 4 0 1 4 0 1 4 0 1 4 0 1

main 25s <1s 18s 7s 13s 6s 6s

Figure 6: Experimental results for all-threats dynamic analysis, value analysis and sante with different options

to all. If all alarms are independent then the option min is
identical to each.

This option combines the advantages of the basic options
all and each described in Sec 3.3. We produce simpler
slices than with option all, hence alarms which are easier
to classify are less penalized by the analysis of more com-
plex alarms. The number of slices k is at most (and often
much less than) that for each. Moreover, each slice pAi is
important since it may be used to classify the end alarm ei,
and the analysis of pAi is never redundant.

The weakness of this option appears when the dynamic
analysis of pAi times out without classifying some a′ ∈ Ai,
while the dynamic analysis of a potentially simpler slice (e.g.
pa′) allows to classify a′. The next option addresses this
drawback.

Option smart: This option (see Fig. 5b) applies the min
option iteratively on a sequence of sets of alarms Ai whose
size card(Ai) decreases after each iteration. Initially, i = 0
and A0 = A.

For each i > 0, we take the minimal slicing-induced cover
{Ai

1, A
i
2, . . . , A

i
ki
} of the set Ai and produce the correspond-

ing slices. The dynamic analysis generates Diagnostici for
Ai. Next, the Refine operation computes Ai+1 as the set of
alarms in Ai \ ends(Ai) that remain unclassified (unknown)
by Diagnostici. Notice that the end alarms are explicitly
excluded, otherwise we could have Ai+1 = Ai and repeat the
same step. Finally, we increment i and repeat the iteration
for the new Ai until Ai+1 becomes empty.

For example, in Fig. 4, if the dynamic analysis of pA0
2
does

not classify a2, only the end alarm a3 is removed from A0
2,

and A1
1 = {a2} for the next step (i = 1) of dynamic analysis

which will be the last.
When Ai+1 becomes empty, the final Diagnostic classifies

a ∈ A as safe (resp. bug) if at least one Diagnostici classifies
a as safe (resp. bug), otherwise it remains unknown.

In this option each alarm is analyzed (as much as possible)
separately by dynamic analysis, and it is done exactly when
necessary, i.e. when it cannot be classified by the dynamic
analysis of a larger slice. It avoids the redundancy of each
and repairs the drawback of min.

4. EXPERIMENTS AND DISCUSSION
In this section, we provide experiments for different op-

tions of sante and compare them with one another and with
a dynamic analysis technique that we call all-threats. This
technique runs dynamic analysis in alarm-guided mode for
the exhaustive list of all potential threats (without filtering
by value analysis and slicing) and considers each threat as
an alarm. We use five examples (up to several hundreds of

LOC) extracted from real-life software where bugs were pre-
viously detected. All bugs are out-of-bound access or invalid
pointers.

Ex. 1 and 2 come from Verisec C analysis benchmark [21].
Ex. 3 is an open-source program1 used to calculate the area
of a convex polygon from the coordinates of its vertices.
Ex. 4 comes from Mediabench [22], Ex. 5 is an open-source
program2 containing a single function validating serial num-
bers on European bank notes. Experiments were conducted
on an Intel quad core 2.40 GHz notebook with 4GB of RAM
with a timeout of ten minutes.

The columns of Fig. 6 show the example number and the
results for each technique. The column threats gives the to-
tal number of potential threats before any analysis. The col-
umn VA gives the number of alarms reported by value analy-
sis and sent to the Slice&Test step. The difference between
the columns threats and VA gives the number of threats
proved safe by value analysis. The column ’�’ provides the
number of alarms proven safe by the method. The columns
’?’ and ’�’ respectively provide the number of remaining un-
classified alarms and the number of detected bugs. The full
process duration and the number of timeouts (TO) are given
below the numbers. In our experiments, all known bugs are
detected with each method.

SANTE vs. all-threats DA. Alarm-guided test gener-
ation in sante only treats the alarms raised by value anal-
ysis while all-threats dully considers all potential threats.
In Ex. 5, all-threats DA analyzes 19 alarms, and it takes
25 seconds to find a bug and to prove that the error states
are unreachable for the remaining 18 threats, while DA in
sante analyzes only 5 alarms because 14 threats have been
already proven safe by value analysis. Thus test generation
in sante detects bugs faster and leaves less unknown alarms
(cf Ex. 1, 4). Of course, when value analysis can’t filter any
threat (cf Ex. 2), sante can take as much time as all-threats.

SANTE none vs. SANTE all. DA in sante all an-
alyzes one simplified program containing all the alarms, so
it considers less paths and detects the bugs in less time (cf
Ex. 5). In the worst case, when slicing does not simplify the
program considerably, sante all can take as much time as
none (cf Ex. 3).

SANTE all vs. SANTE each. In sante each, the
minimal slice for each alarm is separately analyzed by DA.
sante each leaves less unknown alarms (cf Ex. 1, 2, 4). It
terminates in some cases where sante all times out (Ex. 1, 2).
In Ex. 4 it classifies more alarms: DA analyzes two slices.
It times out for one of them and terminates and proves the

1http://c.happycodings.com/Mathematics/code4.html
2http://freshmeat.net/projects/eurocheck

other target alarm safe. Of course, sante each can be slower
than all (Ex. 5), and may waste time since DA on some slices
can give no new information (cf Sec. 3.3 and 3.6).

SANTE all, each vs. SANTE min. In sante min,
DA analyzes less programs than in sante each, thus it is
faster (cf Ex. 1, 5). It can terminate in some cases where
sante all times out (cf Ex. 1). sante min is never waste
of time. However, sante min may time out while sante

each terminates on some slices (cf Ex. 2, 4) because DA on
the minimal slice for an alarm has the highest chances to
classify it.

SANTE each, min vs. SANTE smart. sante smart
acts likemin in absence of timeouts (Ex. 1, 3, 5). If a timeout
is encountered, sante smart analyzes smaller and smaller
slices and stops only when it cannot classify more alarms.
Thus it may take more time than min but provides better
answers (Ex. 2, 4) and without the waste of time of each
(Ex. 1, 2, 5). For instance, in Ex. 2 sante each analyzes
12 slices and goes through 5 timeouts, sante min analyzes
one slice only and times out. For this example sante smart
needs two iterations, DA times out on the first slice con-
taining all 12 alarms and terminates on a smaller slice in
the second iteration. sante smart finds the same results as
sante each after one timeout. In some cases, sante smart
may take more time than none, min or all, but its usage
is in general preferable because smart continues iterations
on smaller slices as long as that can allow to classify more
alarms, and guarantees at the end that DA (with the same
timeout) cannot classify more alarms on any slice.

Simpler counter-examples. Slicing in sante removes
irrelevant code for the analyzed alarms. The counter-exam-
ples found execute significantly shorter paths on the sim-
plified programs. In our experiments, the path length in
counter-examples diminishes on average by 24%, this rate
going up to 71% on some programs, especially with the op-
tion each and with the advanced options (min and smart).

Program reduction. The number of paths can be ex-
ponential in the program size. Hence even a slight reduction
of the program by slicing before test generation is beneficial
and can give better results for larger programs. The average
rate of program reduction with the option all is around 24%
and it goes up to 47% on some programs. With the options
each, min and smart, the average rate is around 51% and
goes up to 97% for some alarms in some programs.

The number of unclassified alarms with sante be-
comes smaller than for all-threats DA (resp. for VA), de-
creasing on average by 34% (resp. 47%) with the options
none and all, by 67% (resp. 74%) with the min option, and
by 82% (resp. 86%) with the options each and smart. For
some examples this rate reaches 100% when all alarms are
classified. Thus the number of remaining unclassified alarms
is smaller with the advanced options and with the each op-
tion, but the each option method is more time-consuming.

Speedup. sante is less time-consuming than all-threats
DA, and it may allow to avoid timeouts. The verification
process gets particularly faster with the new advanced op-
tions (min and smart). The speedup average rate is around
43%, going up to 99% on some examples for the advanced
options. To sum up, the advanced options appear to be more
efficient and may allow to avoid a timeout.

5. RELATED WORK
Many static and dynamic analysis tools are well known

and widely used in practice separately. Static analysis tools
(e.g. Frama-C [14], Polyspace [24, 11]) are generally based
on abstract interpretation [9] or predicate abstraction [17].
Dynamic analysis tools, such as PathCrawler [29], DART/
CUTE [26], SAGE [16] and EXE [5], automatically generate
program inputs satisfying symbolic constraints collected by
symbolic execution. The all-threats DA option used in our
experiments is similar to these tools.

Recently, several papers presented combinations of static
and dynamic analyses for program verification. Daikon [12]
uses dynamic analysis to detect likely invariants. Check’n’-
Crash [27] applies static analysis (the ESC/Java tool) that
reports alarms but uses intraprocedural weakest-precondi-
tion computation rather than value analysis, so it necessi-
tates code annotations and can have a high rate of false
alarms. Next, random test generation (with JCrasher) tries
to confirm the bugs. sante uses an interprocedural value
analysis that necessitates only a precondition, and all-paths
test generation, that may in addition prove some alarms un-
reachable. DSD Crasher [27] applies Daikon [12] to infer
likely invariants before the static analysis step of Check’n’-
Crash to reduce the false alarms rate. This method admits
generated invariants that may be wrong and can result in
proving some real bugs as safe, unlike sante which never
reports a bug as safe.

Synergy [18], BLAST [3] and [23] combine testing and par-
tition refinement for property checking. sante is relative
to the Yogi tool that implements the algorithm DASH [2],
initially called Synergy. In sante, we use value analysis
whereas Yogi uses weakest precondition with template-based
refinement. Both tools track down error states. They are
specified as an input property in Yogi whereas in sante they
are automatically computed by value analysis and error-
branch introduction. Yogi does not use program slicing.
It iteratively refines an over-approximation using informa-
tion on unsatisfiable constraints from test generation. Its
approach is more adapted for one error statement at a time,
while sante can be used on several alarms simultaneously.
[23] combines predicate abstraction and test generation in a
refinement process, guided by the exactness of the abstrac-
tion with respect to operations of the system rather than
by test generation. [15] is another implementation of [7]
where some irrelevant code is excluded before DA for CFG
connectivity reasons, that is weaker than program slicing.

Finally, to the best of our knowledge, advanced strategies
for the integration of program slicing into a combination of
value analysis and test generation for C program debugging
were not previously studied by other authors.

6. CONCLUSION
In this paper we propose novel, optimized and adaptive

strategies for the integration of program slicing into an inno-
vative verification technique, called sante, combining value
analysis and test generation. We provide a detailed descrip-
tion of the sante method with advanced usages of pro-
gram slicing, study the properties of threat dependencies,
introduce the notion of slicing-induced cover, establish and
prove the underlying theoretical results and describe the al-
gorithms. Compared to a basic usage of program slicing, our
advanced strategies need only quadratic additional work in
order to optimize the calls of costly dynamic analysis. We
give a detailed evaluation of all slicing strategies, that have
never been evaluated before, and compare them with one

another.
Our experiments on real programs show that our com-

bined method is more precise than a static analyzer and
more efficient in terms of time and number of detected bugs
than test generation alone. The key objective of program
slicing is to automatically remove irrelevant code, so that
test generation on simplified programs runs faster (average
speedup around 43%, going up to 99% on some examples
for the advanced options) and leaves less unknown alarms
within a given time. Moreover, an error is reported with
more precise information, showing it on a simpler program,
with a shorter program path, a smaller constraint set at
the erroneous statement, giving values for useful variables
only, etc. This is an important benefit in case of automatic
model-based code generation where the developer has no
deep knowledge of the resulting source code.

Future work includes experimenting the sante method on
more examples and more research on different configurations
of analysis techniques (options of value analysis and criteria
of program slicing, using all-branch test generation, etc.).

Acknowledgment. The authors thank the Frama-C

and PathCrawler teams for providing the tools and sup-
port. Special thanks to Patrick Baudin, Bernard Botella,
Pascal Cuoq (the main author of the value analysis plugin),
Löıc Correnson, Bruno Marre, Anne Pacalet (the main au-
thor of the program slicing plugin) and Nicky Williams (the
main author of PathCrawler) for many fruitful discus-
sions, lots of suggestions and advice. Many thanks to the
anonymous referees for their helpful comments.

7. REFERENCES

[1] R. W. Barraclough, D. Binkley, S. Danicic,
M. Harman, R. M. Hierons, A. Kiss, M. Laurence, and
L. Ouarbya. A trajectory-based strict semantics for
program slicing. Theor. Comp. Sci.,
411(11–13):1372–1386, 2010.

[2] N. E. Beckman, A. V. Nori, S. K. Rajamani, and R. J.
Simmons. Proofs from tests. In ISSTA, pages 3–14.
ACM, 2008.

[3] D. Beyer, T. A. Henzinger, R. Jhala, and
R. Majumdar. The software model checker Blast:
Applications to software engineering. Int. J. Softw.
Tools Technol. Transfer, 9(5-6):505–525, 2007.

[4] B. Botella, M. Delahaye, S. Hong-Tuan-Ha,
N. Kosmatov, P. Mouy, M. Roger, and N. Williams.
Automating structural testing of C programs:
Experience with PathCrawler. In AST, pages 70–78,
2009.

[5] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill,
and D. R. Engler. EXE: automatically generating
inputs of death. In CCS, pages 322–335. ACM, 2006.

[6] G. Canet, P. Cuoq, and B. Monate. A value analysis
for C programs. In SCAM, pages 123–124, 2009.

[7] O. Chebaro, N. Kosmatov, A. Giorgetti, and
J. Julliand. Combining static analysis and test
generation for C program debugging. In TAP, volume
6143 of LNCS, pages 652–666. Springer, 2010.

[8] O. Chebaro, N. Kosmatov, A. Giorgetti, and
J. Julliand. The SANTE tool: Value analysis, program
slicing and test generation for C program debugging.
In TAP, pages 78–83, 2011.

[9] P. Cousot and R. Cousot. Abstract interpretation
frameworks. J. Log. Comput., 2(4):511–547, 1992.

[10] P. Cuoq and J. Signoles. Experience report: Ocaml for
an industrial-strength static analysis framework. In
ICFP, pages 281–286, 2009.

[11] A. Deutsch. On the complexity of escape analysis. In
POPL, pages 358–371. ACM, 1997.

[12] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao. The Daikon
system for dynamic detection of likely invariants. Sci.
Comput. Program., 69(1–3):35–45, 2007.

[13] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The
program dependence graph and its use in optimization.
ACM Trans. Program. Lang. Syst., 9:319–349, 1987.

[14] Frama-C. Framework for static analysis of C
programs, 2007–2011. http://frama-c.com/.

[15] X. Ge, K. Taneja, T. Xie, and N. Tillmann. DyTa:
dynamic symbolic execution guided with static
verification results. In ICSE, pages 992–994, 2011.

[16] P. Godefroid, M. Y. Levin, and D. A. Molnar. Active
property checking. In EMSOFT, pages 207–216, 2008.

[17] S. Graf and H. Säıdi. Construction of abstract state
graphs with PVS. In CAV, volume 1254 of LNCS,
pages 72–83. Springer, 1997.

[18] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V.
Nori, and S. K. Rajamani. SYNERGY: a new
algorithm for property checking. In SIGSOFT FSE,
pages 117–127. ACM, 2006.

[19] N. Kosmatov. Artificial Intelligence Applications for
Improved Software Engineering Development: New
Prospects, chapter XI: Constraint-Based Techniques
for Software Testing. IGI Global, 2010.

[20] N. Kosmatov. Online version of the PathCrawler test
generator, 2010–2011. http://pathcrawler-online.com/.

[21] K. Ku, T. E. Hart, M. Chechik, and D. Lie. A buffer
overflow benchmark for software model checkers. In
ASE, pages 389–392. ACM, 2007.

[22] C. Lee, M. Potkonjak, and W. H. Mangione-Smith.
Mediabench: a tool for evaluating and synthesizing
multimedia and communicatons systems. In MICRO,
pages 330–335. IEEE Computer Society, 1997.

[23] C. Pasareanu, R. Pelanek, and W. Visser. Concrete
Model Checking with Abstract Matching and
Refinement. In CAV, volume 3576 of LNCS, pages
52–66. Springer, 2005.

[24] Polyspace. Software verification tool, 1994–2011.
http://mathworks.com/products/polyspace/.

[25] T. W. Reps and W. Yang. The semantics of program
slicing. Technical report, Univ. of Wisconsin, 1988.

[26] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic
unit testing engine for C. In ESEC/FSE, pages
263–272. ACM, 2005.

[27] Y. Smaragdakis and C. Csallner. Combining static
and dynamic reasoning for bug detection. In TAP,
volume 4454 of LNCS, pages 1–16. Springer, 2007.

[28] M. Weiser. Program slicing. In ICSE, pages 439–449.
IEEE Computer Society, 1981.

[29] N. Williams, B. Marre, P. Mouy, and M. Roger.
PathCrawler: automatic generation of path tests by
combining static and dynamic analysis. In EDCC,
volume 3463 of LNCS, pages 281–292. Springer, 2005.

