
Exhaustive Branch Coverage with TreeFrog

 Nicky Williams
Université Paris-Saclay, CEA, LIST,

F-91120 Palaiseau
France

nicky.williams@cea.fr

ABSTRACT

Concolic methods efficiently generate test inputs for exhaustive

path coverage. However, exhaustive path coverage is not often

required or even realistic whereas exhaustive branch coverage is

at the heart of many verification tasks. We explain how, in

TreeFrog, we have tried to find an efficient solution to this very

different problem. We have kept the efficient aspects of depth-

first concolic generation but combined it with multi-threading for

breadth-first search, conflict learning lifted to branches and

finally, some controlled path enumeration. First results show

dramatic improvements over concolic methods1.

CCS CONCEPTS
 •Software and its engineering~Software creation and

management~Software verification and validation~Software

defect analysis~Software testing and debugging

KEYWORDS

Automatic Test Generation, Concolic Test Generation, Dynamic

Symbolic Execution, Path Explosion, Conflict Learning

ACM Reference format:

N. Williams. 2023. In Proceedings of ACM SAC Conference, Tallinn,

Estonia, March 27- March 31, 2023 (SAC’23), 8 pages. DOI:

10.1145/3555776.3577738

1 INTRODUCTION

Structural code coverage criteria in testing are based on the

simple observation that if the part of the program containing a bug

is not executed (a.k.a. covered) by any test case then the bug

cannot be detected. Various structural coverage criteria defining

test objectives in source or binary code have been proposed but

those most widely used in industry, typically for embedded safety-

critical software, seem to be line coverage, branch coverage and

modified condition/decision coverage (MC/DC), and these are

often imposed by certification norms. Moreover these norms often

impose 100% coverage of coverable test objectives and, by

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

SAC '23, March 27 - March 31, 2023, Tallinn, Estonia

Copyright 2023 ACM 978-1-4503-9517-5/23/03…$15.00.

https://doi.org/10.1145/3555776.3577738

extension, some justification of why certain test objectives cannot

be covered. We call this exhaustive coverage and define it as the

generation, for all test objectives, of either

a. input values for a test case which covers the objective or

b. a justification of the lack of a test case.

We insist on the difference between exhaustive coverage and

bug-finding, i.e. the speedy coverage of many test objectives with

no guarantee of completion and where the stopping criterion is

often a time limit on test generation rather than complete

coverage. Indeed, a bug-finding test generation tool may succeed

in covering all test objectives in many cases but exhaustive

coverage requires tools that do this in all possible cases and justify

any failure to reach an objective. Exhaustive coverage of large

code bases is unrealistic today, because of the size of the search

space and also because calls to library functions may have to be

stubbed and the coverage will be dependent on the quality of the

stubs. However, even relatively small programs can be very

difficult to cover exhaustively during unit testing, particularly if

they contain unreachable objectives.

Automatic test input generation techniques for exhaustive

coverage must keep track of which objectives have already been

covered in order to know when to stop test generation and to

avoid generating numerous test cases which cover the same

objectives while failing to cover others. Moreover, in order to

provide a justification of failure to cover a particular test

objective, test generation should not stop until all possible

attempts to cover the objective have been made and should then

report on the result of these attempts. Let us suppose that the

uncovered objective is a branch in the source code. If there seem

to be several partial paths through the source code leading to the

branch, then all these paths must be taken into account. If the

infeasibility of all paths to a branch, or the unsatisfiability of its

weakest precondition can be automatically demonstrated, then this

is the justification of failure to cover the branch. If infeasibility of

one or more paths cannot be demonstrated automatically, for

example because a prover fails or a constraint solver times out,

then the justification for these paths is the formula submitted to

the prover or solver.

Exhaustive branch coverage is also an interesting subject

because of its proximity to other problems. For the automatic

generation of test input values, line coverage and MC/DC are

quite similar to branch coverage, even if MC/DC involves

additional book-keeping. The coverage of other test objectives

which can be defined in the source code (e.g. assertion violations),

or even as pseudo-branches (e.g. run-time errors) is also similar.

Techniques for branch coverage can be extended to these test

SAC’23, March 27 –March 31, 2023, Tallinn, Estonia N. Williams

criteria and indeed already are in many test generation tools.

Moreover, the detection of certain types of "dead code" is ensured

by exhaustive branch coverage. In other problems, often framed in

terms of reachability, unwanted program states are defined and the

problem is to demonstrate whether or not they can occur. Often, if

they can occur, the user would like a counter-example, i.e. test

input values, to help with debugging. In some cases, such as

reactive systems, the reachability of even a single state requires

sophisticated techniques (e.g. [5]) which we do not address in this

paper. Nonetheless, in many cases there are actually numerous

unwanted states and these multi-reachability problems are similar

to exhaustive branch coverage.

Note that static analysis based on abstract interpretation can be

an efficient technique for detecting unreachable branches but it

cannot generate test input values and because of the over-

approximation which is inherent in this approach, it cannot

guarantee detection of all unreachable branches. It can be used as

a prelude to automatic test generation in order to reduce the

number of test objectives.

In this paper, we consider test generation based on symbolic

execution and describe an extension of the concolic method.

Concolic test generation offers the promise of exhaustive

coverage because it can be used to systematically explore the tree

of execution paths. It is very efficient for path coverage but less so

when used for exhaustive branch coverage. This is because path

coverage requires all feasible paths to be covered in any case but

we do not usually need to cover all feasible paths in order to cover

all reachable branches (because most branches occur in several

feasible paths). If, as is often the case, the tree of execution paths

is very large, then exhaustive branch coverage must limit how

much of the tree is explored, i.e. must avoid what is known as

path explosion.

This paper describes a method for test generation for

exhaustive branch coverage which retains the advantages of the

concolic method but increases efficiency by using conflict

learning to prune the search space. The conflicts enable us to take

account of the redundancy in the tree of execution paths and avoid

repeating the same calculation. We start by recalling the classic

concolic method based on symbolic execution and an existing

strategy for branch coverage before exposing our new learning-

based method, presenting the first results, comparing TreeFrog to

the work in the literature and discussing possible improvements.

2 TEST GENERATION BASED ON

SYMBOLIC EXECUTION

Test generation techniques based on symbolic execution

explore the binary tree of execution paths (EPtree). For ease of

explanation, we assume that the source code (in an imperative

language such as C) has already been simplified in order to unroll

loops, separate out side-effects, decompose complex conditions,

inline functions, etc. In practice, system calls must also be stubbed

and variables used when accessing array elements or

dereferencing pointers give rise to additional alias constraints, but

we can consider here, without loss of generality, that the EPtree

represents simplified code composed of atomic branches and

sequential blocks of assignments and that all variables are isolated

(do not belong to a data structure). The EPtree is rooted in the

entry point to the tested function and the leaves all represent exit

from the tested function. A path from the root to a leaf represents

an execution path of the source code. Each branch, bt, in the tree

represents an instance of a source code branch and each source

code branch, b, has a different occurrence in the EPtree for each

possible execution path prefix up to b. For exhaustive branch

coverage, we must find at least one instance, bt, of each source

code branch, b, such that the execution path prefix of bt is feasible

and consistent with bt. This means that when we append bt to its

prefix, the result is also feasible and a test can be generated to

cover b (note that here and in the rest of the paper, we often

shorten "execution path prefix" and "path prefix" to "prefix").

Symbolic execution traverses an execution path (or partial

path), p, in the source code, starting from the function entry point

and constructs a conjunction of constraints, pred(p), on V, the

symbolic values at input of the input variables. Each variable in

the source code may be mutable, i.e. take successive values. The

successive values are distinguished, by renaming mutable source

code variables whenever they take a new value, as in Single Static

Assignment. Each of the resulting single-assignment source code

variables has only one value, which is represented by one

symbolic constrained variable in the solver. We represent path p

as a sequence of source code branches, b0,b1,... Each branch, bi, in

p is translated by symbolic execution into a conjunction of

constraints including the constraints, cai, due to the (possibly

empty) block of assignments before bi and an additional

constraint, ci, due to the branch condition of bi. The resulting

conjunction of constraints, ca0,c0,ca1,c1,... is the path predicate,

pred(p), which defines the input values of all test cases which

would cover p. To generate a new test case, the solver is called to

find a solution to a new path predicate.

3 THE CONCOLIC METHOD

In the concolic method, the first test case is generated by

calling the solver on an initial set of constraints over V

representing the type declarations and a user-supplied

precondition which encodes the test context. The solution will be

an arbitrary set of legitimate concrete input values, i.e. the inputs

of the initial test case. The tested code is instrumented and run on

this test case to recover the path, p, covered by this initial case.

For this and each subsequently generated test case, symbolic

execution is used to translate the branches in p into pred(p) as

explained above. In order to generate new test inputs to cover a

different path, one of the branch constraints, ci, must be negated.

This is often referred to as flipping the branch in the EPtree which

represents the occurrence of bi with the prefix b0, b1,... bi-1. The

result, pred(flip(p,i)), is the conjunction of the prefix of pred(p) up

to ci-1 and the negation, ¬ci, of ci. It is the predicate of the path

prefix, flip(p,i), formed by appending the opposite branch, bi', of

bi to the prefix of bi. pred(flip(p,i)) is submitted to a constraint

solver. A solution to this formula gives the input values of a new

test case which will cover one of the feasible paths with prefix

flip(p,i). We say in this case that the flip is successful.

Exhaustive Branch Coverage with TreeFrog SAC’23, March 27- March 31, 2023, Tallinn, Estonia

b1 b1’

b2
x1 x2

fs1

b6’

b3

b4

b3’

b4’ b7’

b5
x1
fs1

fs2
b7

x2b8
fs2

b10’
x1 fs2fs1x2

b9

fs2

b10

b6

Figure 1 Example of a partial control-flow graph

Consider the example of Figure 1 where b10' is the only

uncovered branch left and covered paths include

p1 = b1,b2,b3,b5,b10,...

p2 = b1,b2,b3',b4,b5,b10,...

p3 = b1,b2,b3',b4',b5',...

p4 = b1',b6,b7,b8,b9,b10,...

p5 = b1',b6',b7',b5',...

Flipping branch b3 of p1 resulted in flipped prefix

b1,b2,b3'. The flip was successful and gave a test-case

which covered a path with the flipped prefix, such as p2.

If the attempted flip is unsuccessful because the constraint

solver finds that pred(flip(p,i)) is unsatisfiable then we have the

demonstration that flip(p,i) is an infeasible path prefix. If the flip

is unsuccessful because the constraint solver times out, then

pred(flip(p,i)) can be used, if necessary, in a justification of non-

coverage of either bi' or some branch which could, in theory, be

reached from bi'.

The concolic method is a loop which interleaves generation of

new test cases (each time a branch is flipped) and exploration of

the paths covered by the previously generated test cases, until

coverage is complete. Covered paths are feasible by definition, as

are all their prefixes, so by flipping a single branch in a feasible

prefix, the concolic method limits solver calls by ensuring

detection of the shortest prefixes of all the infeasible paths. This is

how concolic generation effectively prunes the subtrees rooted in

infeasible prefixes from the space to be explored. This is the first

reason for the efficiency of concolic generation.

Moreover, because concolic generation always follows a

covered path, at each node in the feasible EPtree the solver is

called at most once, if and when the branch is flipped. This is the

second reason for the efficiency of concolic generation.

Finally, if the concolic method is implemented using an

incremental solver and backtracking, then the predicates can be

constructed incrementally, calling the solver to add new

constraints to an existing constraint store at each node. Indeed for

each node, ni, in the EPtree there is a unique path prefix from the

root to ni and its predicate, which is shared by all paths in the

subtree rooted in ni, can be stored on a stack of constraint stores

and recovered by backtracking. This sharing of the predicates of

path prefixes is the final reason for the efficiency of the concolic

method.

The unique feature of the concolic method is that the constraint

solver returns one arbitrary solution from the set of solutions and

so (unless the set is a singleton) we do not know which path will

be covered by the test case corresponding to the chosen solution.

In the case of path coverage, this does not matter because all

feasible paths must be covered in any case. When using concolic

generation for branch coverage, the choice of which branch to flip

next is very important and yet made difficult by our ignorance of

the suffix that will be covered in the case of a successful flip.

Indeed, if the opposite branch at a particular node is an instance of

source code branch, bi', which is not covered yet (such as b10' in

our example) then a successful flip of bi will certainly increase

branch coverage because bi' will be covered and the suffix may

also include other uncovered branches. However, if bi' is already

covered, a successful flip of bi may result in a case which covers

no new branches. In our example, flipping b7 in p4 might cover a

path going through b5' or through b5,b10 or b5,b10'. We

call a flip in the case where the opposite branch is already covered

a hopeful flip. A hopeful flip with no new coverage can be useful

if it reaches a new part of the tree and enables a subsequent flip

which increases coverage (e.g. if a new path through b5,b10 is

covered by the hopeful flip above and then b10 is eagerly

flipped with this prefix) but this is uncertain and we want to limit

the number of test cases with no new coverage. One reason is that

limiting the number of generated test cases limits the time to treat

each case and so total test generation time. Another consideration

is that constraint solving is NP-hard and may run until timeout. In

order to limit test generation time, we should therefore also try to

limit the number of solver calls and certainly avoid calling the

solver several times on the same unsatisfiable problem. In fact, in

real-life code most constraints are trivial and easily solved or

found unsatisfiable, even by syntactic checks. Nonetheless, it is

hard to ensure that pathological constraint solving problems will

not be encountered at some point, endangering exhaustive

coverage, especially if they are treated repeatedly.

4 DECIDING WHICH BRANCH TO FLIP

NEXT: THE MTELSE STRATEGY

The considerations above led us to design a concolic

generation strategy called MTelse, to ensure that hopeful flipping

was only performed when all branches with uncovered opposites

had already been flipped and thereby cut down on calls to the

solver. In [11] we compared this strategy to several others,

including classic depth-first concolic generation. The results show

a correlation between the number of hopeful flips and solver calls.

SAC’23, March 27 –March 31, 2023, Tallinn, Estonia N. Williams

Moreover, MTelse ensures the lowest number of hopeful flips of

all compared strategies on most of the examples, and fewer

hopeful flips than depth-first on all examples.

Here we describe the concolic MTelse strategy and how it

evolved from the starting point of the classic depth-first strategy

with coverage of all the reachable branches as a stopping

criterion. Remember that each time a new test case is generated

from the predicate of a flipped prefix flip(p,i) (or, in the special

case of the first test case of all, from the predicate encoding the

precondition), then we recover the predicate pred(flip(p,i)) and the

suffix, s, of flip(p,i) covered by the new case and, if s is non-

empty, traverse the branches bj,... in s. At each branch, bn, of s, if

we choose to flip, then we add ¬cn to the predicate and then try to

resolve it. If we choose not to flip then we add cn and proceed to

the next branch, bn+1.

Let us now consider the test generation strategy as an

exploration of the EPtree, in which each branch is an instance of a

source code branch. In a depth-first strategy, the generator starts

by traversing the path fragment in the EPtree which represents s

from the start towards the end (i.e. a leaf) without flipping any

branches. The first branch in s to be flipped is the final branch

before the leaf. If this causes a new test case to be generated then

the new suffix, s', is then treated, as well as all suffixes generated

from s'. After that, the generator backtracks up the branches in s,

from the last towards the first, flipping each branch in the same

way. Test generation stops when either all source code branches

have been covered or no EPtree branches are left to flip in any

suffix. At this point, any source code branches which are still

uncovered must be unreachable, unless the solver has timed out at

some point, see [12].

The MTelse strategy differs from depth-first in several ways:

 If the opposite source code branch, b', is not covered yet,

then its representative in the EPtree is eagerly flipped on the

first traversal down towards the leaf. Hopeful flipping is not

performed on traversal in this direction.

 During backtrack up s, we perform hopeful flipping of the

remaining (i.e. whose opposite is already covered) branches

on one condition: we first check whether there is any chance

of covering an uncovered branch, i.e. whether any EPtree

branches in the subtree rooted at the flipped branch represent

an occurrence of an uncovered source code branch.

 To achieve true breadth-first search, and avoid performing

hopeful flipping of branches in newly-covered suffixes

before eager flipping of branches in previously covered

suffixes, we use multi-threading (MT). Each thread treats one

(non-empty) covered suffix and threads are classified as

high-priority while the treatment advances down s and then

become low-priority when the treatment backtracks up s for

hopeful flipping. Low-priority threads are only activated

while no threads are still high-priority. The information on

which branches are covered is shared between threads.

MTelse reduces the number of hopeful flips in most cases, but

cannot avoid another problem posed by the concolic method, and

which applies to both eager and hopeful flipping: the danger that

because of redundancy in the tree of execution paths, constraint

solving repeatedly (and maybe very slowly) fails on the same set

of unsatisfiable constraints.

5 CONFLICT LEARNING

To counter this problem, we take inspiration from SAT-

solving and previous work in the literature and analyse and

memorise the reasons for the unsatisfiability of infeasible path

prefixes. We lift the resulting conflict sets from the level of the

constraints to that of source code branches. Conflicts are therefore

ordered sets of source code branches. This enables us to check,

before calling the solver to find a test covering a particular path

prefix, whether the prefix contains a learnt conflict which makes it

infeasible. Our implementation of conflict learning involves

several steps, all based on the same principle, which is to avoid

repeating the same calculations. We now describe how we

proceed.

5.1 Finding unsatisfiable cores

Each time a predicate, pred(p), where p is some partial path

b0,...,bn, is found to be unsatisfiable by the solver, we

incrementally construct a new conjunction of constraints in order

to find one or more unsatisfiable cores, i.e. minimal unsatisfiable

subsets of the set of constraints, which are sufficient to cause the

unsatisfiability of the predicate.

The calculation of the unsatisfiable cores reveals information

which can be reused later, as described below. This is why we do

not rely on the solver to find the unsatisfiable cores but find them

ourselves as follows:

1. First we find the minimal infeasible sequence, mis(p), of p

by operating back-substitution over the elements of p,

from bn towards b0. Back-substitution projects the branch

constraints backwards over the previous values of the

source code variables and builds, for successive branches

bi, a conjunction of constraints which is the path-based

weakest precondition, of the path fragment bi,...,bn and

which we call wp(bi,...,bn). Each wp(bi,...,bn) is associated

with one mapping between the constraints it contains and

the branches bi,...,bn and another mapping between the

symbolic constrained variables and the corresponding

source code variable values. Mutable source code

variables are renamed whenever they take a new value, as

in Section 2.

a) For each branch, bi, the branch condition is translated

into a constraint over the values (at the EPtree node with

prefix b0,...,bi-1) of the relevant source code variable

values. The resulting constraint is added to wp(bi,...,bn).

b) For each assignment, lhs=rhs;, if wp(bi,...,bn) contains

constraints over the symbolic variable lhss representing

the value of lhs at this point then all occurrences of lhss

in wp(bi,...,bn) are replaced by a new symbolic variable

representing the value of rhs at this point. Otherwise,

the assignment is ignored.

2. At each branch, bi, (except bn, the first to be treated), we

call the solver to check the satisfiability of wp(bi,...,bn).

Exhaustive Branch Coverage with TreeFrog SAC’23, March 27- March 31, 2023, Tallinn, Estonia

3. If wp(bi,...,bn) is satisfiable, then we memorise it, along

with the corresponding path fragment bi,...,bn, which we

call a feasible sequence.

4. If wp(bi,...,bn) is unsatisfiable, then we have found mis(p),

which is just bi,...,bn, i.e. the unsatisfiability of p can be

due to just the constraints from bi,...,bn. We now stop

back-substitution and try to find one or more unsatisfiable

cores in wp(bi,...,bn). We do this by removing constraints

one by one from wp(bi,...,bn) and re-checking

satisfiability. We obtain one or more unsatisfiable cores:

i.e. ordered subsets of wp(bi,...,bn) containing the minimal

number of constraints for unsatisfiability. For each

unsatisfiable core, we map the constraints to the

corresponding subset core(mis(p)) of branches from

mis(p). The branches of each core(mis(p)) are in the same

order as which they appear in mis(p) but they may not be

contiguous in mis(p).

5.2 Transforming Unsat Cores into Conflicts

We now insert extra branches into each core(mis(p)), as

necessary in order to protect the def-use links, see [4]. Indeed, the

condition of a particular branch, b, may depend in mis(p) on the

value of source code variable v set by a previous assignment a, i.e.

there is a def-use link between a and b. Note that if a is dominated

by another branch, ba, then ba will already be included in

core(mis(p)). Now, another path fragment, f, in the EPtree may

cover the same assignment a and the same branch b but, in

between the two, contain an additional assignment a1, dominated

by additional source code branch ba1 (in this case there is always a

dominating branch because a1 is not present in mis(p)), which

subsumes a and gives v a different value. The danger is that f

contains core(mis(p)) but is not infeasible, because it has broken

the def-use link between a and b. To avoid this problem, we find

all branches such as ba1 which dominate possible re-assignments

of variables in def-use links between elements of core(mis(p)).

The opposites, ba1' of all such branches ba1 must have been in

mis(p) and we add them to core(mis(p)) (respecting the order

between branches in mis(p)). After insertion of these

supplementary branches, we obtain an ordered superset of

core(mis(p)) which is still an ordered subset of mis(p) but also

protects the def-use links. This is what we call a conflict. Any

other path fragment containing this conflict will also be infeasible.

We can now check, before flipping any branch, whether the

flipped prefix contains a conflict. Moreover, before hopefully

flipping a branch in an attempt to cover another, uncovered,

branch, u, we can check whether the result of appending u to the

flipped prefix contains any conflicts. We should only perform

hopeful flipping if there may be a path from b' to some u which is

not in a conflict with the flipped prefix (i.e. which does not

contain a conflict when appended to the flipped prefix).

5.3 Propagating Conflicts

We also use information from the code structure to propagate

and combine conflicts in order to create new ones, which we call

lemmas. A simple example is the propagation of all conflicts

ending in a particular branch, b, to all branches dominated by b.

Another example is the combination of the pair of conflicts bk,bj

and bj',bi: if all paths from bk go through either bj or bj' then we

can imply the new conflict bk,bi. If the result of combining

conflicts is a conflict containing just one branch, u, then u is

unreachable.

6 REUSING FEASIBLE SEQUENCES

Feasible sequences are a by-product of conflict learning as

described in Section 5.1 and they can be reused.

Firstly, when finding a new unsatisfiable core as described in

Section 5.1, we may analyse a path fragment, s, which ends in a

known feasible sequence, fs. There is no need to re-perform back-

substitution on this part of s, we can just start from fs and its

known path-based weakest precondition.

Secondly, when deciding whether to flip a branch b, if a

feasible sequence, fs, starts at b' and ends with an uncovered

branch, u, then we can add the path-based weakest precondition of

fs to the predicate of the prefix up to b' (after mapping the

symbolic variables in the constraints of fs to the corresponding

symbolic variables in the predicate) and call the solver. If the

(satisfiable) constraints from the path-based weakest precondition

of fs are consistent with the (satisfiable) constraints of the

predicate of the path prefix to b, then a test will be generated

which immediately covers u. If not, we can continue back-

substitution from fs to learn the reason for the infeasibility of this

new partial path to u.

7 LEARNING IN OUR EXAMPLE

Let us return to the example in Figure 1. The flipped prefix of

p1 contains no known conflicts so we eagerly try to flip b10 but

fail and learn the conflict x1=b2,b5,b10' and the feasible

sequence fs1=b3,b5,b10'. We consider eagerly flipping b10

in p2 but do not try because the flipped fragment would contain

x1. Next, we eagerly try to flip b10 in p4 but fail and learn the

conflict x2=b6,b8,b10' and the feasible sequence

fs2=b7,b8,b9,b10'. There are no more covered paths

including b10 so when all eager flips have been tried we consider

hopefully flipping b5' in p3: b5 has already been covered but it

could lead to b10' but the flipped prefix includes x1 so we don’t

try this hopeful flip. We then consider hopefully flipping b7 in

p4: the flipped prefix contains no known conflicts and we can

append the feasible subsequence b5,b10' of fs1 to

b1',b6,b7' in order to cover b10', also without including

any known conflicts. We recover the stored path-based weakest

precondition of b5,b10', and add it to the constraints for the

flipped prefix in order to generate a solution covering b10'.

8 ENUMERATING SUFFIXES TO

UNCOVERED BRANCHES

We found that the previous measures reduced hopeful flipping

but not enough to have a real impact on path explosion. This is

why we took the radical decision to eliminate hopeful flipping

SAC’23, March 27 –March 31, 2023, Tallinn, Estonia N. Williams

altogether and enumerate individual path suffixes from previously

covered opposite branches to uncovered targets. Path enumeration

is clearly combinatorial, it is exactly what is at the root of path

explosion, and it can only pay off if conflicts are found fast

enough to substantially prune the search space. We now describe

how we manage path enumeration to try to ensure that this is the

case.

8.1 Building a Conflict-free Suffix

Before starting enumeration of the numerous path suffixes

from a flipped prefix towards some uncovered branch, we ensure

that at least one suffix exists that is conflict-free, i.e. that does not

contain internal conflicts or conflicts with the flipped prefix.

Given a branch whose opposite, b', is already covered, we

traverse the control flow graph from b' towards the exit of the

tested function until we encounter an uncovered branch, u. This

traversal results in a skeleton path suffix, sk, from b' to u. sk

contains just the necessary branches to get from b' to u while

avoiding conflicts. As each new branch is added to sk, we check

for conflicts between the flipped prefix and the branches in sk. We

also check for conflicts involving branches on potential paths

joining the branches in sk, and add branches to sk as necessary to

avoid these conflicts. If we cannot build a skeleton from b' to u

which has no conflicts, then we try to build a skeleton to the next

uncovered branch that we may be able to reach from b', and so on.

If we succeed in building sk for some u then it will be contained in

any full conflict-free suffix from b' to u.

Next, we start enumerating all the conflict-free suffixes from b'

to u by fleshing out sk. The full suffix contains additional

branches, between those of sk, and we select these arbitrarily,

checking that each one does not induce some conflict which was

discovered since sk was built.

8.2 Back-substitution of the Suffix

When we find a conflict-free suffix, s, from b' to u, we then

apply back-substitution as in Section 5.1 to check its internal

consistency. If part of s is found to be unsatisfiable then we learn

the new conflict and enumerate the next possible suffix from b' to

u. If not, we add the path-based weakest-precondition which is the

result of back-substitution of s to the predicate of the flipped

prefix and try to generate a new test to immediately cover u.

8.3 Over-approximate Conflicts

If all suffixes from b' to u are found to be infeasible, then the

flipped prefix must contain a set of branches which makes u

unreachable from b'. We store and reuse this information as

follows. We construct the union of b' and u and all the branches in

the flipped prefix which contributed to the different conflicts

found during enumeration. This is a conflict which is not

necessarily minimal, but which we cannot refine any further, so

we call it an over-approximate conflict. Before enumerating paths

between b' and u from some new flipped prefix, we check whether

it contains an over-approximate conflict with u.

9 DISCARDING CASES

A final advantage of our backtracking concolic search strategy

is that we can reduce the size of the set of test cases which we

propose in order to cover the reachable branches. Note that

finding the smallest possible set of cases which satisfy a given

criterion is a hard problem which we do not claim to solve. We

memorise the branches covered by each case and if a case, e,

generated early on turns out not to cover any branches that are not

also covered by a set, l, of later cases and if, because of

backtracking and low thread priority, the coverage of the cases in l

is known before treatment of the suffix of e ends, then we can

exclude e from the final set of cases.

10 RESULTS ON TWO REAL-LIFE EXAMPLES

We have implemented TreeFrog as a proof-of-concept

prototype extension of PathCrawler [12] and so far we have only

implemented conflict learning on a subset of code containing no

arrays, pointers, function calls or loops. This is why we first used

the Tcas example from [11] to compare TreeFrog to the depth-

first and MTelse strategies. Tcas is a control logic function written

in C with 80 branches, one of which is non-trivially unreachable.

Table 1 Results of different strategies on the Tcas example

strategy cases discarded solver calls eager flips

depth-1st 404 381 420 18

MTelse 395 374 411 18

TreeFrog 19 1 20 16

Table 1 compares, for exhaustive coverage, the total number of

cases generated, the number which were discarded from the final

set, the number of branches flipped eagerly and the total number

of solver calls to flip branches. We averaged the results over 10

runs for the depth-first strategy (because of the non-determinism

in the solver) and 100 runs for MTelse and Tree Frog (because of

the additional non-determinism due to multi-threading).

401 hopeful flips were performed on Tcas with the depth-first

strategy and 392 with MtElse whereas TreeFrog performed 533

satisfiability checks (not counted in the solver calls) on the results

of back-substitution in order to detect 52 conflicts and construct 4

new feasible paths to uncovered branches.

Table 2 Results on the Complex example

strategy cases discarded solver calls eager flips

MTelse 424839 424799 424838 40

TreeFrog 90 50 248 76

We then applied TreeFrog to Complex, another example of a C

function containing 270 branches of which 2 are non-trivially

unreachable, see Table 2. The depth-first strategy timed out long

before running to completion but the MTelse strategy took about

half an hour (on an Intel Corei9 machine with 64GB RAM) to

perform exhaustive branch coverage and TreeFrog took around 3

Exhaustive Branch Coverage with TreeFrog SAC’23, March 27- March 31, 2023, Tallinn, Estonia

minutes on the same machine. At the cost of 16022 satisfiability

checks on the results of back-substitution, TreeFrog found 246

conflicts and constructed 170 new feasible paths to uncovered

branches. On this example, one of the test cases generated after

construction of a new feasible path to an uncovered branch

enabled eager flipping of another uncovered branch, i.e. TreeFrog

effectively interleaved concolic generation with enumeration.

11 RELATED WORK

There has been much previous work on combatting path

explosion in test generation based on symbolic execution but

some approaches, such as [13], are more suited to bug-finding

than exhaustive coverage because they aim to achieve a high level

of coverage as fast as possible, but do not try to account for

uncovered test objectives and may even repeat previous

calculations.

Other approaches, such as [10], try to partition the search

space, e.g. by using function summaries, in order to avoid

combinatorial explosion. These approaches are orthogonal to ours

and they could probably be combined.

In one of the first attempts to combat path explosion by

pruning the search space, the RWset tool [2] eliminates duplicated

subtrees stb rooted in a branch b in the case where after b there are

no live variables, ie. all the variables used in stb are defined after

b. In order to do this, RWset performs a depth-first analysis of the

source code to find the live variables at each point. In our

approach, if there are no live variables after a particular branch b,

then the first exploration of stb will either cover the uncovered

branches or else find the internal conflicts within the subtree

which prevent their coverage. When a different prefix to b is

treated, the exploration of stb will be performed again, unlike in

RWset, but will be much faster because all the internal conflicts in

the subtree are already known. Moreover, in our approach, even if

there are live variables after some branch, b, and so stb would not

be pruned by RWset, conflicts learnt in the first exploration of stb

can still be used in subsequent explorations of the same subtree.

In [4], which inspired the work described here, the reasons for

infeasibility are analysed in order to construct explanations, which

are the same as our conflicts, but back-substitution is not used and

feasible sequences are not saved and reused. Rather than using the

conflicts to decide whether to flip a branch as we do, they use

them to generate an automaton capable of generating, or

recognising, all paths which will be infeasible for the same reason.

In [9], as in TreeFrog, previously covered branches are only

flipped if they may lead to uncovered branches and sets of

conflicting branches are learnt and compared to flipped prefixes.

However, the unsat core is recovered from the solver and the

tested programs are stateless, which means that it is not necessary

to add extra branches to the conflicting set in order to protect the

def-use links. In [8], branch conflicts obtained in the same way

from stateless programs are treated but as whole paths are treated

instead of the path prefixes analysed in concolic generation, a

conflict may be in the middle of a path. Instead of analysing path

prefixes and suffixes as we do, a data-dependency analysis is

performed and the code is dynamically partitioned in order to

decide the order in which paths are treated.

The Kite tool [5] computes the same conflicts as we do but

Kite’s aim is to cover assertion violations rather than branches.

The conflicts are derived from the conflict clause returned by the

solver. Kite is based on dynamic symbolic execution instead of a

concolic generator. The connections between branches and

sequential blocks in the source code are encoded as constraints so

that solutions to these constraints represent execution paths to be

explored. This encoding also ensures the preservation of def-use

chains in conflicts. Mimicking conflict-driven clause learning, the

conflicts are encoded as constraints on combinations of branches.

The negation of the constraints encoding the conflicts are added to

the constraints encoding paths through the CFG so that only new

paths containing no conflicts will be accepted. This elegantly

achieves the same result as our enumeration of conflict-free

suffixes but we invoke enumeration as a last choice, after concolic

generation, whereas in Kite it is the sole mechanism used for test

generation. Kite cannot reuse feasible sequences as we do, nor

construct lemmas or overapproximate conflicts.

The BiTe [1] test generation tool for branch coverage does not

learn conflicts but does combine concolic generation with

reachability analysis, i.e. the construction of weakest

preconditions which are more general than our path-based

weakest preconditions because they encompass all possible path

prefixes. BiTe starts with a concolic test generation phase and

then calculates the weakest precondition of the remaining

uncovered branches. It maintains a graph of program states

annotated with the information calculated by symbolic execution,

including infeasible prefixes, and reachability analysis and uses

this to guide further symbolic execution in order to combine a

weakest precondition with a path prefix predicate, rather as we

reuse a feasible sequence, in order to try and cover a new branch.

Another response to path explosion in concolic testing has

been the use of interpolants. Interpolants can be used to abstract

the subtree rooted at a node in the EPtree. Unlike our branch

conflicts, they are expressed directly in terms of the underlying

constraints. This means that, unlike in our work, interpolants can

be used when different branch combinations give rise to the same

constraints. Interpolants are a potentially powerful tool but it is

difficult to find the best way to combine them with test generation

based on symbolic execution, especially for branch coverage.

Indeed, an interpolant must be calculated at some point in test

generation and express a property of the subtree which is useful at

a later point. Moreover, interpolants can only been calculated

once the entire subtree has been explored. As a result, [7]

proposes using interpolants in concolic test generation, but for

depth-first path coverage and not branch coverage and by eagerly

exploring subtrees in parallel with concolic generation. TracerX

[6] extends this work with more sophisticated interpolants and is

implemented as an extension of dynamic symbolic execution

instead of a concolic test generator. In these papers, the

interpolant expresses conditions for feasible coverage of at least

one assertion violation or runtime error in the subtree. Note that

we check just the conflicts which apply to some currently

SAC’23, March 27 –March 31, 2023, Tallinn, Estonia N. Williams

uncovered branch but interpolants are specific to subtrees and not

to test objectives so an interpolant may concern several test

objectives, some of which may already have been covered. The

TracerX tool was applied to different problems: proof of the

reachability of a single test objective (where it was compared to

the CMBC model-checker) and coverage of basic blocks, thereby

demonstrating the link between branch coverage and other

verification problems that we mention in Section 1.

12 CONCLUSIONS

We describe the TreeFrog test generation method which tries

to retain the advantages of concolic test generation while using

conflict learning to prune the search space and achieve exhaustive

branch coverage. In TreeFrog, we lift conflicts, as well as the

calculation of unsatisfiable cores, to the level of atomic branches

in the simplified source code. We also replace hopeful flipping by

reuse of learnt feasible branch sequences or controlled

enumeration of paths to uncovered branches. Path enumeration

causes a combinatorial explosion so can only be deployed if

conflict learning enables substantial pruning of the space over

which enumeration takes place. This is the case in the examples

we have tried so far, in which the results are dramatically

improved compared to concolic generation without conflict

learning.

TreeFrog makes extensive use of incremental constraint

solving and backtracking for increased efficiency, as described

above. Moreover, we use multi-threading to ensure that instances

of branches which are already covered are treated last.

TreeFrog can currently only learn and apply conflicts in code

fragments with no loops, function calls, pointers or arrays.

Treating pointers and arrays complicates back-substitution but is a

well-known problem. Loops and function calls cause the same

branch to have several locations in the simplified source code so

that branches can no longer be identified solely by their location.

Moreover, the treatment of loops (and recursive functions) poses

the problem of how and when to terminate loop unrolling (or

recursion) during path enumeration. We must now implement the

treatment of these constructions in order to be able to apply

TreeFrog to more examples for further evaluation.

Note that TreeFrog reduces the number of calls to the solver in

order to flip branches (i.e. resolve path predicates) but at the

expense of a large number of satisfiability checks during back-

substitution. We assume that these checks are performed on short

conjunctions of constraints over small numbers of variables and

so are relatively inexpensive. In future work, we will try to assess

whether this assumption is justified.

One shortcoming of our procedure, described in Section 5.1,

for finding unsatisfiable cores is that it is based on the shortest

infeasible fragment, mis(p). This means that we do neglect the

possibility that a longer infeasible fragment of p contains a

different mutually inconsistent set of constraints and so we do risk

missing other conflicts in p, which can only be revealed by

another subsequent infeasible prefix. We need to evaluate in

future work whether it would be more efficient to ensure we

detect all possible unsatisfiable cores in p.

Another concern which we would like to address in future

work, is that TreeFrog cannot learn a conflict which might cause

the solver to timeout on a predicate rather than declare it

unsatisfiable.

Finally, learning branch conflicts is a time-consuming way to

learn the same unsatisfiable combination of constraints when it is

is induced by several different sets of branches. This is why it

might be worthwhile to extend our method to learn and avoid

some unsatisfiable subsets of constraints as well as branch

conflicts.

ACKNOWLEDGMENTS

This work was partially supported by ANR grant ANR-18-CE25-

0015-01.

REFERENCES
[1] M. Baluda, G. Denaro, M. Pezzè. Bidirectional symbolic analysis for

effective branch testing. IEEE Trans. Software Eng., 42(5):403–426, 2016,

doi:10.1109/TSE.2015.2490067.

[2] P. Boonstoppel, C. Cadar, D.R. Engler. Rwset: Attacking path explosion in

constraint-based test generation. In Proc. TACAS 2008, Lecture Notes in

Computer Science vol. 4963, 351–366. Springer, 2008. doi:10.1007/978-3-

540-78800-3_27.

[3] A.R. Bradley. Sat-based model checking without unrolling. In Proc. VMCAI

2011, Lecture Notes in Computer Science, vol. 6538, 70–87. Springer, 2011.

doi:10.1007/978-3-642-18275-4_7.

[4] M. Delahaye, B. Botella, A. Gotlieb. Explanation-based generalization of

infeasible path. In Proc. 3rd Intl. Conf. on Software Testing, Verification and

Validation, ICST 2010, 215–224. IEEE, 2010. doi:10.1109/ICST.2010.13.

[5] C. Gomes do Val. Conflict-driven symbolic execution: How to learn to get

better. Master’s thesis, University of British Columbia, Vancouver, 2014.

doi:10.14288/1.0165906.

[6] J. Jaffar, R. Maghareh, S. Godboley, X. Ha. Tracerx: Dynamic symbolic

execution with interpolation. In Proc. FASE 2020, Lecture Notes in

Computer Science, vol 12076, 530–534. Springer, 2020. doi:10.1007/978-3-

030-45234-6_28.

[7] J. Jaffar, V. Murali, J.A. Navas. Boosting concolic testing via interpolation.

In Proc. Joint Meeting of the European Software Engineering Conf. and

ACM SIGSOFT Symposium on the Foundations of Software Engineering

(ESEC/FSE’13), ACM, 2013, 48-58, doi:10.1145/2491411.2491425.

[8] B.A. Marcellino, M.S. Hsiao. Dynamic partitioning strategy to enhance

symbolic execution. In Proc. 2016 Design, Automation & Test in Europe

Conf. (DATE 2016), IEEE, 2016, 774–779.

[9] S. Prabhu et al. An efficient 2-phase strategy to achieve high branch

coverage. In Proc. 20th IEEE Asian Test Symposium (ATS 2011), IEEE, 167

–174. doi:10.1109/ATS.2011.83.

[10] R. Qiu, G. Yang, C.S. Pasareanu, S. Khurshid. Compositional symbolic

execution with memoized replay. In Proc. 37th IEEE/ACM Intl. Conf. on

Software Engineering, ICSE 2015, IEEE, Vol. 1, 632–642.

doi:10.1109/ICSE.2015.79.

[11] N. Williams. Towards exhaustive branch coverage with PathCrawler. In

Proc. 2021 IEEE/ACM Intl. Conf. on Automation of Software Test (AST

2021), IEEE/ACM, 117–120.

[12] N. Williams, B. Marre, P. Mouy. On-the-fly generation of k-path tests for C

functions. In Proc. 19th IEEE Intl. Conf. on Automated Software

Engineering (ASE 2004), IEEE, 290–293. doi:10.1109/ASE. 2004.10020.

[13] T. Xie, N. Tillmann, J. de Halleux, W. Schulte. Fitness-guided path

exploration in dynamic symbolic execution. In Proc. 2009 IEEE/IFIP Intl.

Conf. on Dependable Systems and Networks (DSN 2009), IEEE, 359–368,

doi:10.1109/DSN.2009.5270315

