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ABSTRACT 

Concolic methods efficiently generate test inputs for exhaustive 

path coverage. However, exhaustive path coverage is not often 

required or even realistic whereas exhaustive branch coverage is 

at the heart of many verification tasks. We explain how, in 

TreeFrog, we have tried to find an efficient solution to this very 

different problem. We have kept the efficient aspects of depth-

first concolic generation but combined it with multi-threading for 

breadth-first search, conflict learning lifted to branches and 

finally, some controlled path enumeration. First results show 

dramatic improvements over concolic methods1. 
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1 INTRODUCTION 

Structural code coverage criteria in testing are based on the 

simple observation that if the part of the program containing a bug 

is not executed (a.k.a. covered) by any test case then the bug 

cannot be detected. Various structural coverage criteria defining 

test objectives in source or binary code have been proposed but 

those most widely used in industry, typically for embedded safety-

critical software, seem to be line coverage, branch coverage and 

modified condition/decision coverage (MC/DC), and these are 

often imposed by certification norms. Moreover these norms often 

impose 100% coverage of coverable test objectives and, by 
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extension, some justification of why certain test objectives cannot 

be covered. We call this exhaustive coverage and define it as the 

generation, for all test objectives, of either 

a. input values for a test case which covers the objective or 

b. a justification of the lack of a test case. 

We insist on the difference between exhaustive coverage and 

bug-finding, i.e. the speedy coverage of many test objectives with 

no guarantee of completion and where the stopping criterion is 

often a time limit on test generation rather than complete 

coverage. Indeed, a bug-finding test generation tool may succeed 

in covering all test objectives in many cases but exhaustive 

coverage requires tools that do this in all possible cases and justify 

any failure to reach an objective. Exhaustive coverage of large 

code bases is unrealistic today, because of the size of the search 

space and also because calls to library functions may have to be 

stubbed and the coverage will be dependent on the quality of the 

stubs. However, even relatively small programs can be very 

difficult to cover exhaustively during unit testing, particularly if 

they contain unreachable objectives. 

Automatic test input generation techniques for exhaustive 

coverage must keep track of which objectives have already been 

covered in order to know when to stop test generation and to 

avoid generating numerous test cases which cover the same 

objectives while failing to cover others. Moreover, in order to 

provide a justification of failure to cover a particular test 

objective, test generation should not stop until all possible 

attempts to cover the objective have been made and should then 

report on the result of these attempts. Let us suppose that the 

uncovered objective is a branch in the source code. If there seem 

to be several partial paths through the source code leading to the 

branch, then all these paths must be taken into account. If the 

infeasibility of all paths to a branch, or the unsatisfiability of its 

weakest precondition can be automatically demonstrated, then this 

is the justification of failure to cover the branch. If infeasibility of 

one or more paths cannot be demonstrated automatically, for 

example because a prover fails or a constraint solver times out, 

then the justification for these paths is the formula submitted to 

the prover or solver. 

Exhaustive branch coverage is also an interesting subject 

because of its proximity to other problems. For the automatic 

generation of test input values, line coverage and MC/DC are 

quite similar to branch coverage, even if MC/DC involves 

additional book-keeping. The coverage of other test objectives 

which can be defined in the source code (e.g. assertion violations), 

or even as pseudo-branches (e.g. run-time errors) is also similar. 

Techniques for branch coverage can be extended to these test 
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criteria and indeed already are in many test generation tools. 

Moreover, the detection of certain types of "dead code" is ensured 

by exhaustive branch coverage. In other problems, often framed in 

terms of reachability, unwanted program states are defined and the 

problem is to demonstrate whether or not they can occur. Often, if 

they can occur, the user would like a counter-example, i.e. test 

input values, to help with debugging. In some cases, such as 

reactive systems, the reachability of even a single state requires 

sophisticated techniques (e.g. [5]) which we do not address in this 

paper. Nonetheless, in many cases there are actually numerous 

unwanted states and these multi-reachability problems are similar 

to exhaustive branch coverage. 

Note that static analysis based on abstract interpretation can be 

an efficient technique for detecting unreachable branches but it 

cannot generate test input values and because of the over-

approximation which is inherent in this approach, it cannot 

guarantee detection of all unreachable branches. It can be used as 

a prelude to automatic test generation in order to reduce the 

number of test objectives. 

In this paper, we consider test generation based on symbolic 

execution and describe an extension of the concolic method. 

Concolic test generation offers the promise of exhaustive 

coverage because it can be used to systematically explore the tree 

of execution paths. It is very efficient for path coverage but less so 

when used for exhaustive branch coverage. This is because path 

coverage requires all feasible paths to be covered in any case but 

we do not usually need to cover all feasible paths in order to cover 

all reachable branches (because most branches occur in several 

feasible paths). If, as is often the case, the tree of execution paths 

is very large, then exhaustive branch coverage must limit how 

much of the tree is explored, i.e. must avoid what is known as 

path explosion. 

This paper describes a method for test generation for 

exhaustive branch coverage which retains the advantages of the 

concolic method but increases efficiency by using conflict 

learning to prune the search space. The conflicts enable us to take 

account of the redundancy in the tree of execution paths and avoid 

repeating the same calculation. We start by recalling the classic 

concolic method based on symbolic execution and an existing 

strategy for branch coverage before exposing our new learning-

based method, presenting the first results, comparing TreeFrog to 

the work in the literature and discussing possible improvements. 

2  TEST GENERATION BASED ON 

SYMBOLIC EXECUTION 

Test generation techniques based on symbolic execution 

explore the binary tree of execution paths (EPtree). For ease of 

explanation, we assume that the source code (in an imperative 

language such as C) has already been simplified in order to unroll 

loops, separate out side-effects, decompose complex conditions, 

inline functions, etc. In practice, system calls must also be stubbed 

and variables used when accessing array elements or 

dereferencing pointers give rise to additional alias constraints, but 

we can consider here, without loss of generality, that the EPtree 

represents simplified code composed of atomic branches and 

sequential blocks of assignments and that all variables are isolated 

(do not belong to a data structure). The EPtree is rooted in the 

entry point to the tested function and the leaves all represent exit 

from the tested function. A path from the root to a leaf represents 

an execution path of the source code. Each branch, bt, in the tree 

represents an instance of a source code branch and each source 

code branch, b, has a different occurrence in the EPtree for each 

possible execution path prefix up to b. For exhaustive branch 

coverage, we must find at least one instance, bt, of each source 

code branch, b, such that the execution path prefix of bt is feasible 

and consistent with bt. This means that when we append bt to its 

prefix, the result is also feasible and a test can be generated to 

cover b (note that here and in the rest of the paper, we often 

shorten "execution path prefix" and "path prefix" to "prefix").  

Symbolic execution traverses an execution path (or partial 

path), p, in the source code, starting from the function entry point 

and constructs a conjunction of constraints, pred(p), on V, the 

symbolic values at input of the input variables. Each variable in 

the source code may be mutable, i.e. take successive values. The 

successive values are distinguished, by renaming mutable source 

code variables whenever they take a new value, as in Single Static 

Assignment. Each of the resulting single-assignment source code 

variables has only one value, which is represented by one 

symbolic constrained variable in the solver. We represent path p 

as a sequence of source code branches, b0,b1,... Each branch, bi, in 

p is translated by symbolic execution into a conjunction of 

constraints including the constraints, cai, due to the (possibly 

empty) block of assignments before bi and an additional 

constraint, ci, due to the branch condition of bi. The resulting 

conjunction of constraints, ca0,c0,ca1,c1,... is the path predicate, 

pred(p), which defines the input values of all test cases which 

would cover p. To generate a new test case, the solver is called to 

find a solution to a new path predicate. 

3 THE CONCOLIC METHOD 

In the concolic method, the first test case is generated by 

calling the solver on an initial set of constraints over V 

representing the type declarations and a user-supplied 

precondition which encodes the test context. The solution will be 

an arbitrary set of legitimate concrete input values, i.e. the inputs 

of the initial test case. The tested code is instrumented and run on 

this test case to recover the path, p, covered by this initial case. 

For this and each subsequently generated test case, symbolic 

execution is used to translate the branches in p into pred(p) as 

explained above. In order to generate new test inputs to cover a 

different path, one of the branch constraints, ci, must be negated. 

This is often referred to as flipping the branch in the EPtree which 

represents the occurrence of bi with the prefix b0, b1,... bi-1. The 

result, pred(flip(p,i)), is the conjunction of the prefix of pred(p) up 

to ci-1 and the negation, ¬ci, of ci. It is the predicate of the path 

prefix, flip(p,i), formed by appending the opposite branch, bi', of 

bi to the prefix of bi. pred(flip(p,i)) is submitted to a constraint 

solver. A solution to this formula gives the input values of a new 

test case which will cover one of the feasible paths with prefix 

flip(p,i). We say in this case that the flip is successful. 
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Figure 1 Example of a partial control-flow graph  

Consider the example of Figure 1 where b10' is the only 

uncovered branch left and covered paths include 

p1 = b1,b2,b3,b5,b10,... 

p2 = b1,b2,b3',b4,b5,b10,... 

p3 = b1,b2,b3',b4',b5',... 

p4 = b1',b6,b7,b8,b9,b10,... 

p5 = b1',b6',b7',b5',...  

Flipping branch b3 of p1 resulted in flipped prefix 

b1,b2,b3'. The flip was successful and gave a test-case 

which covered a path with the flipped prefix, such as p2. 

If the attempted flip is unsuccessful because the constraint 

solver finds that pred(flip(p,i)) is unsatisfiable  then we have the 

demonstration that flip(p,i) is an infeasible path prefix. If the flip 

is unsuccessful because the constraint solver times out, then 

pred(flip(p,i)) can be used, if necessary, in a justification of non-

coverage of either bi' or some branch which could, in theory, be 

reached from bi'.  

The concolic method is a loop which interleaves generation of 

new test cases (each time a branch is flipped) and exploration of 

the paths covered by the previously generated test cases, until 

coverage is complete. Covered paths are feasible by definition, as 

are all their prefixes, so by flipping a single branch in a feasible 

prefix, the concolic method limits solver calls by ensuring 

detection of the shortest prefixes of all the infeasible paths. This is 

how concolic generation effectively prunes the subtrees rooted in 

infeasible prefixes from the space to be explored. This is the first 

reason for the efficiency of concolic generation.  

Moreover, because concolic generation always follows a 

covered path, at each node in the feasible EPtree the solver is 

called at most once, if and when the branch is flipped. This is the 

second reason for the efficiency of concolic generation.  

Finally, if the concolic method is implemented using an 

incremental solver and backtracking, then the predicates can be 

constructed incrementally, calling the solver to add new 

constraints to an existing constraint store at each node. Indeed for 

each node, ni, in the EPtree there is a unique path prefix from the 

root to ni and its predicate, which is shared by all paths in the 

subtree rooted in ni, can be stored on a stack of constraint stores 

and recovered by backtracking. This sharing of the predicates of 

path prefixes is the final reason for the efficiency of the concolic 

method. 

The unique feature of the concolic method is that the constraint 

solver returns one arbitrary solution from the set of solutions and 

so (unless the set is a singleton) we do not know which path will 

be covered by the test case corresponding to the chosen solution. 

In the case of path coverage, this does not matter because all 

feasible paths must be covered in any case. When using concolic 

generation for branch coverage, the choice of which branch to flip 

next is very important and yet made difficult by our ignorance of 

the suffix that will be covered in the case of a successful flip. 

Indeed, if the opposite branch at a particular node is an instance of 

source code branch, bi', which is not covered yet (such as b10' in 

our example) then a successful flip of bi will certainly increase 

branch coverage because bi' will be covered and the suffix may 

also include other uncovered branches. However, if bi' is already 

covered, a successful flip of bi may result in a case which covers 

no new branches. In our example, flipping b7 in p4 might cover a 

path going through b5' or through  b5,b10 or b5,b10'. We 

call a flip in the case where the opposite branch is already covered 

a hopeful flip. A hopeful flip with no new coverage can be useful 

if it reaches a new part of the tree and enables a subsequent flip 

which increases coverage (e.g. if a new path through b5,b10 is 

covered by the hopeful flip above and then b10 is eagerly 

flipped with this prefix) but this is uncertain and we want to limit 

the number of test cases with no new coverage. One reason is that 

limiting the number of generated test cases limits the time to treat 

each case and so total test generation time. Another consideration 

is that constraint solving is NP-hard and may run until timeout. In 

order to limit test generation time, we should therefore also try to 

limit the number of solver calls and certainly avoid calling the 

solver several times on the same unsatisfiable problem. In fact, in 

real-life code most constraints are trivial and easily solved or 

found unsatisfiable, even by syntactic checks. Nonetheless, it is 

hard to ensure that pathological constraint solving problems will 

not be encountered at some point, endangering exhaustive 

coverage, especially if they are treated repeatedly.  

4 DECIDING WHICH BRANCH TO FLIP 

NEXT: THE MTELSE STRATEGY 

The considerations above led us to design a concolic 

generation strategy called MTelse, to ensure that hopeful flipping 

was only performed when all branches with uncovered opposites 

had already been flipped and thereby cut down on calls to the 

solver. In [11] we compared this strategy to several others, 

including classic depth-first concolic generation. The results show 

a correlation between the number of hopeful flips and solver calls. 
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Moreover, MTelse ensures the lowest number of hopeful flips of 

all compared strategies on most of the examples, and fewer 

hopeful flips than depth-first on all examples.  

Here we describe the concolic MTelse strategy and how it 

evolved from the starting point of the classic depth-first strategy 

with coverage of all the reachable branches as a stopping 

criterion. Remember that each time a new test case is generated 

from the predicate of a flipped prefix flip(p,i) (or, in the special 

case of the first test case of all, from the predicate encoding the 

precondition), then we recover the predicate pred(flip(p,i)) and the 

suffix, s, of flip(p,i) covered by the new case and, if s is non-

empty, traverse the branches bj,... in s. At each branch, bn, of s, if 

we choose to flip, then we add ¬cn to the predicate and then try to 

resolve it. If we choose not to flip then we add cn and proceed to 

the next branch, bn+1. 

Let us now consider the test generation strategy as an 

exploration of the EPtree, in which each branch is an instance of a 

source code branch. In a depth-first strategy, the generator starts 

by traversing the path fragment in the EPtree which represents s 

from the start towards the end (i.e. a leaf) without flipping any 

branches. The first branch in s to be flipped is the final branch 

before the leaf. If this causes a new test case to be generated then 

the new suffix, s', is then treated, as well as all suffixes generated 

from s'. After that, the generator backtracks up the branches in s, 

from the last towards the first, flipping each branch in the same 

way. Test generation stops when either all source code branches 

have been covered or no EPtree branches are left to flip in any 

suffix. At this point, any source code branches which are still 

uncovered must be unreachable, unless the solver has timed out at 

some point, see [12].  

The MTelse strategy differs from depth-first in several ways:  

 If the opposite source code branch, b', is not covered yet, 

then its representative in the EPtree is eagerly flipped on the 

first traversal down towards the leaf. Hopeful flipping is not 

performed on traversal in this direction. 

 During backtrack up s, we perform hopeful flipping of the 

remaining (i.e. whose opposite is already covered) branches 

on one condition: we first check whether there is any chance 

of covering an uncovered branch, i.e. whether any EPtree 

branches in the subtree rooted at the flipped branch represent 

an occurrence of an uncovered source code branch. 

 To achieve true breadth-first search, and avoid performing 

hopeful flipping of branches in newly-covered suffixes 

before eager flipping of branches in previously covered 

suffixes, we use multi-threading (MT). Each thread treats one 

(non-empty) covered suffix and threads are classified as 

high-priority while the treatment advances down s and then 

become low-priority when the treatment backtracks up s for 

hopeful flipping. Low-priority threads are only activated 

while no threads are still high-priority. The information on 

which branches are covered is shared between threads. 

MTelse reduces the number of hopeful flips in most cases, but 

cannot avoid another problem posed by the concolic method, and 

which applies to both eager and hopeful flipping: the danger that 

because of redundancy in the tree of execution paths, constraint 

solving repeatedly (and maybe very slowly) fails on the same set 

of unsatisfiable constraints.  

5 CONFLICT LEARNING 

To counter this problem, we take inspiration from SAT-

solving and previous work in the literature and analyse and 

memorise the reasons for the unsatisfiability of infeasible path 

prefixes. We lift the resulting conflict sets from the level of the 

constraints to that of source code branches. Conflicts are therefore 

ordered sets of source code branches. This enables us to check, 

before calling the solver to find a test covering a particular path 

prefix, whether the prefix contains a learnt conflict which makes it 

infeasible. Our implementation of conflict learning involves 

several steps, all based on the same principle, which is to avoid 

repeating the same calculations. We now describe how we 

proceed.  

5.1 Finding unsatisfiable cores 

Each time a predicate, pred(p), where p is some partial path 

b0,...,bn, is found to be unsatisfiable by the solver, we 

incrementally construct a new conjunction of constraints in order 

to find one or more unsatisfiable cores, i.e. minimal unsatisfiable 

subsets of the set of constraints, which are sufficient to cause the 

unsatisfiability of the predicate.  

The calculation of the unsatisfiable cores reveals information 

which can be reused later, as described below. This is why we do 

not rely on the solver to find the unsatisfiable cores but find them 

ourselves as follows: 

1. First we find the minimal infeasible sequence, mis(p), of p 

by operating back-substitution over the elements of p, 

from bn towards b0. Back-substitution projects the branch 

constraints backwards over the previous values of the 

source code variables and builds, for successive branches 

bi, a conjunction of constraints which is the path-based 

weakest precondition, of the path fragment bi,...,bn and 

which we call wp(bi,...,bn). Each wp(bi,...,bn) is associated 

with one mapping between the constraints it contains and 

the branches bi,...,bn and another mapping between the 

symbolic constrained variables and the corresponding 

source code variable values. Mutable source code 

variables are renamed whenever they take a new value, as 

in Section 2. 

a) For each branch, bi, the branch condition is translated 

into a constraint over the values (at the EPtree node with 

prefix b0,...,bi-1) of the relevant source code variable 

values. The resulting constraint is added to wp(bi,...,bn). 

b) For each assignment, lhs=rhs;, if wp(bi,...,bn) contains 

constraints over the symbolic variable lhss representing 

the value of lhs at this point then all occurrences of lhss 

in wp(bi,...,bn) are replaced by a new symbolic variable 

representing the value of rhs at this point. Otherwise, 

the assignment is ignored. 

2. At each branch, bi, (except bn, the first to be treated), we 

call the solver to check the satisfiability of wp(bi,...,bn). 
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3. If wp(bi,...,bn) is satisfiable, then we memorise it, along 

with the corresponding path fragment bi,...,bn, which we 

call a  feasible sequence. 

4. If wp(bi,...,bn) is unsatisfiable, then we have found mis(p), 

which is just bi,...,bn, i.e. the unsatisfiability of p can be 

due to just the constraints from bi,...,bn. We now stop 

back-substitution and try to find one or more unsatisfiable 

cores in wp(bi,...,bn). We do this by removing constraints 

one by one from wp(bi,...,bn) and re-checking 

satisfiability. We obtain one or more unsatisfiable cores: 

i.e. ordered subsets of wp(bi,...,bn) containing the minimal 

number of constraints for unsatisfiability. For each 

unsatisfiable core, we map the constraints to the 

corresponding subset core(mis(p)) of branches from 

mis(p). The branches of each core(mis(p)) are in the same 

order as which they appear in mis(p) but they may not be 

contiguous in mis(p).  

5.2 Transforming Unsat Cores into Conflicts 

We now insert extra branches into each core(mis(p)), as 

necessary in order to protect the def-use links, see [4]. Indeed, the 

condition of a particular branch, b, may depend in mis(p) on the 

value of source code variable v set by a previous assignment a, i.e. 

there is a def-use link between a and b. Note that if a is dominated 

by another branch, ba, then ba will already be included in 

core(mis(p)). Now, another path fragment, f, in the EPtree may 

cover the same assignment a and the same branch b but, in 

between the two, contain an additional assignment a1, dominated 

by additional source code branch ba1 (in this case there is always a 

dominating branch because a1 is not present in mis(p)), which 

subsumes a and gives v a different value. The danger is that f 

contains core(mis(p)) but is not infeasible, because it has broken 

the def-use link between a and b. To avoid this problem, we find 

all branches such as ba1 which dominate possible re-assignments 

of variables in def-use links between elements of core(mis(p)). 

The opposites, ba1' of all such branches ba1 must have been in 

mis(p) and we add them to core(mis(p)) (respecting the order 

between branches in mis(p)). After insertion of these 

supplementary branches, we obtain an ordered superset of 

core(mis(p)) which is still an ordered subset of  mis(p) but also 

protects the def-use links. This is what we call a conflict. Any 

other path fragment containing this conflict will also be infeasible. 

We can now check, before flipping any branch, whether the 

flipped prefix contains a conflict. Moreover, before hopefully 

flipping a branch in an attempt to cover another, uncovered, 

branch, u, we can check whether the result of appending u to the 

flipped prefix contains any conflicts. We should only perform 

hopeful flipping if there may be a path from b' to some u which is 

not in a conflict with the flipped prefix (i.e. which does not 

contain a conflict when appended to the flipped prefix).  

5.3 Propagating Conflicts 

We also use information from the code structure to propagate 

and combine conflicts in order to create new ones, which we call 

lemmas. A simple example is the propagation of all conflicts 

ending in a particular branch, b, to all branches dominated by b. 

Another example is the combination of the pair of conflicts bk,bj 

and bj',bi: if all paths from bk go through either bj or bj' then we 

can imply the new conflict bk,bi. If the result of combining 

conflicts is a conflict containing just one branch, u, then u is 

unreachable.  

6 REUSING FEASIBLE SEQUENCES 

Feasible sequences are a by-product of conflict learning as 

described in Section 5.1 and they can be reused.  

Firstly, when finding a new unsatisfiable core as described in 

Section 5.1, we may analyse a path fragment, s, which ends in a 

known feasible sequence, fs. There is no need to re-perform back-

substitution on this part of s, we can just start from fs and its 

known path-based weakest precondition. 

Secondly, when deciding whether to flip a branch b, if a 

feasible sequence, fs, starts at b' and ends with an uncovered 

branch, u, then we can add the path-based weakest precondition of 

fs to the predicate of the prefix up to b' (after mapping the 

symbolic variables in the constraints of fs to the corresponding 

symbolic variables in the predicate) and call the solver. If the 

(satisfiable) constraints from the path-based weakest precondition 

of fs are consistent with the (satisfiable) constraints of the 

predicate of the path prefix to b, then a test will be generated 

which immediately covers u. If not, we can continue back-

substitution from fs to learn the reason for the infeasibility of this 

new partial path to u. 

7 LEARNING IN OUR EXAMPLE 

Let us return to the example in Figure 1. The flipped prefix of 

p1 contains no known conflicts so we eagerly try to flip b10 but 

fail and learn the conflict x1=b2,b5,b10' and the  feasible 

sequence fs1=b3,b5,b10'. We consider eagerly flipping b10 

in p2 but do not try because the flipped fragment would contain 

x1. Next, we eagerly try to flip b10 in p4 but fail and learn the 

conflict x2=b6,b8,b10' and the  feasible sequence 

fs2=b7,b8,b9,b10'. There are no more covered paths 

including b10 so when all eager flips have been tried we consider 

hopefully flipping b5' in p3: b5 has already been covered but it 

could lead to b10' but the flipped prefix includes x1 so we don’t 

try this hopeful flip. We then consider hopefully flipping b7 in 

p4: the flipped prefix contains no known conflicts and we can 

append the feasible subsequence b5,b10' of fs1 to 

b1',b6,b7' in order to cover b10', also without including 

any known conflicts. We recover the stored path-based weakest 

precondition of b5,b10', and add it to the constraints for the 

flipped prefix in order to generate a solution covering b10'. 

8 ENUMERATING SUFFIXES TO 

UNCOVERED BRANCHES 

We found that the previous measures reduced hopeful flipping 

but not enough to have a real impact on path explosion. This is 

why we took the radical decision to eliminate hopeful flipping 
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altogether and enumerate individual path suffixes from previously 

covered opposite branches to uncovered targets. Path enumeration 

is clearly combinatorial, it is exactly what is at the root of path 

explosion, and it can only pay off if conflicts are found fast 

enough to substantially prune the search space. We now describe 

how we manage path enumeration to try to ensure that this is the 

case.  

8.1 Building a Conflict-free Suffix 

Before starting enumeration of the numerous path suffixes 

from a flipped prefix towards some uncovered branch, we ensure 

that at least one suffix exists that is conflict-free, i.e. that does not 

contain internal conflicts or conflicts with the flipped prefix. 

Given a branch whose opposite, b', is already covered, we 

traverse the control flow graph from b' towards the exit of the 

tested function until we encounter an uncovered branch, u. This 

traversal results in a skeleton path suffix, sk, from b' to u. sk 

contains just the necessary branches to get from b' to u while 

avoiding conflicts. As each new branch is added to sk, we check 

for conflicts between the flipped prefix and the branches in sk. We 

also check for conflicts involving branches on potential paths 

joining the branches in sk, and add branches to sk as necessary to 

avoid these conflicts. If we cannot build a skeleton from b' to u 

which has no conflicts, then we try to build a skeleton to the next 

uncovered branch that we may be able to reach from b', and so on. 

If we succeed in building sk for some u then it will be contained in 

any full conflict-free suffix from b' to u. 

Next, we start enumerating all the conflict-free suffixes from b' 

to u by fleshing out sk. The full suffix contains additional 

branches, between those of sk, and we select these arbitrarily, 

checking that each one does not induce some conflict which was 

discovered since sk was built. 

8.2 Back-substitution of the Suffix 

When we find a conflict-free suffix, s, from b' to u, we then 

apply back-substitution as in Section 5.1 to check its internal 

consistency. If part of s is found to be unsatisfiable then we learn 

the new conflict and enumerate the next possible suffix from b' to 

u. If not, we add the path-based weakest-precondition which is the 

result of back-substitution of s to the predicate of the flipped 

prefix and try to generate a new test to immediately cover u. 

8.3 Over-approximate Conflicts 

If all suffixes from b' to u are found to be infeasible, then the 

flipped prefix must contain a set of branches which makes u 

unreachable from b'. We store and reuse this information as 

follows. We construct the union of b' and u and all the branches in 

the flipped prefix which contributed to the different conflicts 

found during enumeration. This is a conflict which is not 

necessarily minimal, but which we cannot refine any further, so 

we call it an over-approximate conflict. Before enumerating paths 

between b' and u from some new flipped prefix, we check whether 

it contains an over-approximate conflict with u. 

9 DISCARDING CASES 

A final advantage of our backtracking concolic search strategy 

is that we can reduce the size of the set of test cases which we 

propose in order to cover the reachable branches. Note that 

finding the smallest possible set of cases which satisfy a given 

criterion is a hard problem which we do not claim to solve. We 

memorise the branches covered by each case and if a case, e, 

generated early on turns out not to cover any branches that are not 

also covered by a set, l, of later cases and if, because of 

backtracking and low thread priority, the coverage of the cases in l 

is known before treatment of the suffix of e ends, then we can 

exclude e from the final set of cases.  

10 RESULTS ON TWO REAL-LIFE EXAMPLES 

We have implemented TreeFrog as a proof-of-concept 

prototype extension of PathCrawler [12] and so far we have only 

implemented conflict learning on a subset of code containing no 

arrays, pointers, function calls or loops. This is why we first used 

the Tcas example from [11] to compare TreeFrog to the depth-

first and MTelse strategies. Tcas is a control logic function written 

in C with 80 branches, one of which is non-trivially unreachable. 

Table 1 Results of different strategies on the Tcas example 

strategy cases discarded solver calls eager flips 

depth-1st 404 381 420 18 

MTelse 395 374 411 18 

TreeFrog 19 1 20 16 

 

Table 1 compares, for exhaustive coverage, the total number of 

cases generated, the number which were discarded from the final 

set, the number of branches flipped eagerly and the total number 

of solver calls to flip branches. We averaged the results over 10 

runs for the depth-first strategy (because of the non-determinism 

in the solver) and 100 runs for MTelse and Tree Frog (because of 

the additional non-determinism due to multi-threading).  

401 hopeful flips were performed on Tcas with the depth-first 

strategy and 392 with MtElse whereas TreeFrog performed 533 

satisfiability checks (not counted in the solver calls) on the results 

of back-substitution in order to detect 52 conflicts and construct 4 

new feasible paths to uncovered branches. 

Table 2 Results on the Complex example 

strategy cases discarded solver calls eager flips 

MTelse 424839 424799 424838 40 

TreeFrog 90 50 248 76 

 

We then applied TreeFrog to Complex, another example of a C 

function containing 270 branches of which 2 are non-trivially 

unreachable, see Table 2. The depth-first strategy timed out long 

before running to completion but the MTelse strategy took about 

half an hour (on an Intel Corei9 machine with 64GB RAM) to 

perform exhaustive branch coverage and TreeFrog took around 3 
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minutes on the same machine. At the cost of 16022 satisfiability 

checks on the results of back-substitution, TreeFrog found 246 

conflicts and constructed 170 new feasible paths to uncovered 

branches. On this example, one of the test cases generated after 

construction of a new feasible path to an uncovered branch 

enabled eager flipping of another uncovered branch, i.e. TreeFrog 

effectively interleaved concolic generation with enumeration.  

11 RELATED WORK 

There has been much previous work on combatting path 

explosion in test generation based on symbolic execution but 

some approaches, such as [13], are more suited to bug-finding 

than exhaustive coverage because they aim to achieve a high level 

of coverage as fast as possible, but do not try to account for 

uncovered test objectives and may even repeat previous 

calculations.  

Other approaches, such as [10], try to partition the search 

space, e.g. by using function summaries, in order to avoid 

combinatorial explosion. These approaches are orthogonal to ours 

and they could probably be combined.  

In one of the first attempts to combat path explosion by 

pruning the search space, the RWset tool [2] eliminates duplicated 

subtrees stb rooted in a branch b in the case where after b there are 

no live variables, ie. all the variables used in stb are defined after 

b. In order to do this, RWset performs a depth-first analysis of the 

source code to find the live variables at each point. In our 

approach, if there are no live variables after a particular branch b, 

then the first exploration of stb will either cover the uncovered 

branches or else find the internal conflicts within the subtree 

which prevent their coverage. When a different prefix to b is 

treated, the exploration of stb will be performed again, unlike in 

RWset, but will be much faster because all the internal conflicts in 

the subtree are already known. Moreover, in our approach, even if 

there are live variables after some branch, b, and so stb would not 

be pruned by RWset, conflicts learnt in the first exploration of stb 

can still be used in subsequent explorations of the same subtree.  

In [4], which inspired the work described here, the reasons for 

infeasibility are analysed in order to construct explanations, which 

are the same as our conflicts, but back-substitution is not used and 

feasible sequences are not saved and reused. Rather than using the 

conflicts to decide whether to flip a branch as we do, they use 

them to generate an automaton capable of generating, or 

recognising, all paths which will be infeasible for the same reason.  

In [9], as in TreeFrog, previously covered branches are only 

flipped if they may lead to uncovered branches and sets of 

conflicting branches are learnt and compared to flipped prefixes. 

However, the unsat core is recovered from the solver and the 

tested programs are stateless, which means that it is not necessary 

to add extra branches to the conflicting set in order to protect the 

def-use links. In [8], branch conflicts obtained in the same way 

from stateless programs are treated but as whole paths are treated 

instead of the path prefixes analysed in concolic generation, a 

conflict may be in the middle of a path. Instead of analysing path 

prefixes and suffixes as we do, a data-dependency analysis is 

performed and the code is dynamically partitioned in order to 

decide the order in which paths are treated.  

The Kite tool [5] computes the same conflicts as we do but 

Kite’s aim is to cover assertion violations rather than branches. 

The conflicts are derived from the conflict clause returned by the 

solver. Kite is based on dynamic symbolic execution instead of a 

concolic generator. The connections between branches and 

sequential blocks in the source code are encoded as constraints so 

that solutions to these constraints represent execution paths to be 

explored. This encoding also ensures the preservation of def-use 

chains in conflicts. Mimicking conflict-driven clause learning, the 

conflicts are encoded as constraints on combinations of branches. 

The negation of the constraints encoding the conflicts are added to 

the constraints encoding paths through the CFG so that only new 

paths containing no conflicts will be accepted. This elegantly 

achieves the same result as our enumeration of conflict-free 

suffixes but we invoke enumeration as a last choice, after concolic 

generation, whereas in Kite it is the sole mechanism used for test 

generation. Kite cannot reuse feasible sequences as we do, nor 

construct lemmas or overapproximate conflicts.  

The BiTe [1] test generation tool for branch coverage does not 

learn conflicts but does combine concolic generation with 

reachability analysis, i.e. the construction of weakest 

preconditions which are more general than our path-based 

weakest preconditions because they encompass all possible path 

prefixes. BiTe starts with a concolic test generation phase and 

then calculates the weakest precondition of the remaining 

uncovered branches. It maintains a graph of program states 

annotated with the information calculated by symbolic execution, 

including infeasible prefixes, and reachability analysis and uses 

this to guide further symbolic execution in order to combine a 

weakest precondition with a path prefix predicate, rather as we 

reuse a feasible sequence, in order to try and cover a new branch.  

Another response to path explosion in concolic testing has 

been the use of interpolants. Interpolants can be used to abstract 

the subtree rooted at a node in the EPtree. Unlike our branch 

conflicts, they are expressed directly in terms of the underlying 

constraints. This means that, unlike in our work, interpolants can 

be used when different branch combinations give rise to the same 

constraints. Interpolants are a potentially powerful tool but it is 

difficult to find the best way to combine them with test generation 

based on symbolic execution, especially for branch coverage. 

Indeed, an interpolant must be calculated at some point in test 

generation and express a property of the subtree which is useful at 

a later point. Moreover, interpolants can only been calculated 

once the entire subtree has been explored. As a result, [7] 

proposes using interpolants in concolic test generation, but for 

depth-first path coverage and not branch coverage and by eagerly 

exploring subtrees in parallel with concolic generation. TracerX 

[6] extends this work with more sophisticated interpolants and is 

implemented as an extension of dynamic symbolic execution 

instead of a concolic test generator. In these papers, the 

interpolant expresses conditions for feasible coverage of at least 

one assertion violation or runtime error in the subtree. Note that 

we check just the conflicts which apply to some currently 
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uncovered branch but interpolants are specific to subtrees and not 

to test objectives so an interpolant may concern several test 

objectives, some of which may already have been covered. The 

TracerX tool was applied to different problems: proof of the 

reachability of a single test objective (where it was compared to 

the CMBC model-checker) and coverage of basic blocks, thereby 

demonstrating the link between branch coverage and other 

verification problems that we mention in Section 1.  

12 CONCLUSIONS 

We describe the TreeFrog test generation method which tries 

to retain the advantages of concolic test generation while using 

conflict learning to prune the search space and achieve exhaustive 

branch coverage. In TreeFrog, we lift conflicts, as well as the 

calculation of unsatisfiable cores, to the level of atomic branches 

in the simplified source code. We also replace hopeful flipping by 

reuse of learnt feasible branch sequences or controlled 

enumeration of paths to uncovered branches. Path enumeration 

causes a combinatorial explosion so can only be deployed if 

conflict learning enables substantial pruning of the space over 

which enumeration takes place. This is the case in the examples 

we have tried so far, in which the results are dramatically 

improved compared to concolic generation without conflict 

learning.  

TreeFrog makes extensive use of incremental constraint 

solving and backtracking for increased efficiency, as described 

above. Moreover, we use multi-threading to ensure that instances 

of branches which are already covered are treated last.  

TreeFrog can currently only learn and apply conflicts in code 

fragments with no loops, function calls, pointers or arrays. 

Treating pointers and arrays complicates back-substitution but is a 

well-known problem. Loops and function calls cause the same 

branch to have several locations in the simplified source code so 

that branches can no longer be identified solely by their location. 

Moreover, the treatment of loops (and recursive functions) poses 

the problem of how and when to terminate loop unrolling (or 

recursion) during path enumeration. We must now implement the 

treatment of these constructions in order to be able to apply 

TreeFrog to more examples for further evaluation.  

Note that TreeFrog reduces the number of calls to the solver in 

order to flip branches (i.e. resolve path predicates) but at the 

expense of a large number of satisfiability checks during back-

substitution. We assume that these checks are performed on short 

conjunctions of constraints over small numbers of variables and 

so are relatively inexpensive. In future work, we will try to assess 

whether this assumption is justified. 

One shortcoming of our procedure, described in Section 5.1, 

for finding unsatisfiable cores is that it is based on the shortest 

infeasible fragment, mis(p). This means that we do neglect the 

possibility that a longer infeasible fragment of p contains a 

different mutually inconsistent set of constraints and so we do risk 

missing other conflicts in p, which can only be revealed by 

another subsequent infeasible prefix. We need to evaluate in 

future work whether it would be more efficient to ensure we 

detect all possible unsatisfiable cores in p. 

Another concern which we would like to address in future 

work, is that TreeFrog cannot learn a conflict which might cause 

the solver to timeout on a predicate rather than declare it 

unsatisfiable.  

Finally, learning branch conflicts is a time-consuming way to 

learn the same unsatisfiable combination of constraints when it is 

is induced by several different sets of branches. This is why it 

might be worthwhile to extend our method to learn and avoid 

some unsatisfiable subsets of constraints as well as branch 

conflicts. 
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