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Abstract While the development of one software verification tool is often
seen as a difficult task, the realization of a tool combining various verification
techniques is even more complex. This paper presents an innovative tool for
verification of C programs called Sante (Static ANalysis and TEsting). We
show how several tools based on heterogeneous techniques such as abstract
interpretation, dependency analysis, program slicing, constraint solving and
test generation can be combined within one tool. We describe the integration
of these tools and discuss particular aspects of each underlying tool that are
beneficial for the whole combination.
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1 Introduction

Modern software engineering essentially relies on a wide range of automated
tools, going from requirements engineering and constructing the initial model
up to evaluation and deployment of the final product. Among the most sophis-
ticated tools are those for software verification, reconciling complex mathemat-
ical methods for difficult, often undecidable, verification problems, solutions
for their optimal implementation and appropriate design facilitating their us-
ability and integration into the complete software engineering process. Such
tools become even more complex when they combine different techniques, or
several independent tools, with specific features and limitations for each of
them. The architectural design of these new integrated tools plays a crucial
role in the whole combined product.

Nobody could imagine in the early 1970’s, when the first version of the C
programming language was developed by Dennis Ritchie and Kenneth Thomp-
son, that some forty years later one of the numerous verification tools for C
programs would include such heterogeneous techniques and paradigms as the
following:

– program parsing and abstract syntax tree (AST) construction,
– abstract interpretation,
– value, pointer and alias analysis,
– intra-procedural data and control dependency analysis,
– inter-procedural dependency analysis,
– dependence-based program slicing,
– constraint solving,
– constraint logic programming,
– program instrumentation,
– test generation combining symbolic and concrete program execution.

Indeed, most of these techniques are much younger than C itself, and originally
were not developed in order to cooperate with the others.

This paper presents an innovative verification tool, called Sante, where
all these techniques are combined within one tool for verification of C pro-
grams. The Sante1 (Static ANalysis and TEsting) tool is implemented inside
Frama-C [25,17], an open-source platform dedicated to analysis of C pro-
grams and developed at CEA LIST. Frama-C integrates various analyzers
sharing a common specification language called ACSL (ANSI/ISO C Specifi-
cation Language) [4].

In this paper we only give a brief presentation of the Sante method and
focus on the tool aspects of its implementation. The Sante tool strongly re-
lies on powerful underlying tools for each of its steps, that sometimes solicit

1 The French word santé means health, and sometimes also Cheers!
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Fig. 1 Overview of the Sante method

in turn other tools for specific analyses. Our first objective is to emphasize
the particular technical and implementation aspects of these tools that made
them particularly interesting for using in Sante. Secondly, we discuss the ar-
chitecture and tool integration issues that appeared particularly beneficial for
efficient, maintainable and well-structured implementation. Finally, we eval-
uate the Sante tool from both technical and architectural points of view,
illustrating the interest of the combined verification method and the advan-
tages of the adopted tool integration solutions.

The paper is organized as follows. Section 2 briefly introduces the Sante

method. Section 3 presents each of the tools used by Sante. Next, in Section 4
we discuss integration issues of all these tools within one tool inside the global
framework of Frama-C. Section 5 evaluates the combined tool by experiments
and on the basis of our implementation feedback. Section 6 presents related
work. Section 7 concludes and outlines several future work directions.

2 Overview of the SANTE method

This section provides an overview of the Sante verification method for single-
threaded C programs proposed by Chebaro et al. [12,13,14]. For simplicity, we
do not consider here the case of non-terminating programs representing some
theoretical difficulties (briefly discussed in Sections 3.2.2, 3.3.2) which are not
in the scope of this paper. The method is illustrated by Fig. 1. Its inputs are
a C program p and its precondition which defines value ranges for acceptable
inputs of p and relationships between them.

At the first step, a value analysis produces a set of alarms A reporting
threatening statements in p for which it detects a risk of runtime error. The
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current version of Sante treats the risks of division by zero, out-of-bounds
array access and some cases of invalid pointers. The value analysis step uses
the Value plugin of Frama-C.

The objective of the second step, based on program slicing, is to simplify
the initial program before the last step. According to the user-defined slicing
option and the structure of dependencies in A, this step determines which
and how many simplified programs (slices) should be generated and sent to
dynamic analysis. Each simplified program contains a subset of alarms that can
be triggered. The second step uses the Pdg and Slicing plugins of Frama-C.

Finally, for each simplified program pi, the dynamic analysis step tries to
activate the potential threat for each alarm present in pi. It may generate
a counter-example for an alarm, i.e. a test case showing that the instruction
reported by the alarm is not safe and provokes a runtime error. Test generation
allows Sante to produce for each alarm a diagnostic that can be safe for a
false alarm, bug for an effective bug confirmed by some input state, or unknown
if it does not know whether this alarm is an effective error or not. We say that
an alarm is classified if its diagnostic is bug or safe. This step uses the Path-

Crawler plugin of Frama-C.

Several slicing options are available in Sante, each of them reflecting a
different usage of program slicing. A trivial one skips program slicing, and
sends the initial program p1 = p to the dynamic analysis step. Another option
applies program slicing only once to generate a unique simplified program
p1 containing all alarms of A. The disadvantage of this usage is that test
generation may lack time or space, and alarms that could be easier to classify
in a smaller slice are penalized by the analysis of a bigger slice containing
more complex alarms. Another option performs program slicing with respect
to each alarm separately. It produces n slices p1, . . . , pn where n = card(A).
Since test generation is executed separately for each slice, there is a risk of
redundancy and waste of time with this option if some alarms are included in
several slices.

To obtain a better compromise between a bigger number of smaller slices to
be analyzed by the costly dynamic analysis step and a smaller number of bigger
slices where some alarms can remain unclassified, the Sante method proposes
to optimize the number of slices (and test generation sessions). It exploits the
dependencies between alarms in advanced usages of program slicing. In these
usages, the slicing is performed with respect to subsets of alarms selected in
a specific way in order to obtain a reasonable trade-off between the number
and the size of the slices. Moreover, one of the advanced options proposes an
iterative verification process, where smaller slices are generated and sent to
dynamic analysis as long as there is a chance to classify more alarms on these
smaller slices. The slicing options of the Sante method are described in detail
and discussed in [14].
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3 Underlying tools

In this section, we present the underlying tools and techniques used by
Sante: value analysis (Value), dependency analysis (Pdg), program slic-
ing (Slicing), constraint solving library (Colibri) and test generation tool
(PathCrawler). We discuss specific features and design solutions appearing
to be particularly valuable for Sante or enlarging their applications in other
contexts.

3.1 Abstract interpretation based value analysis

The Frama-C plugin for value analysis [11,22], called Value, is loosely based
on the principles of Abstract Interpretation [19]. Abstract interpretation of-
fers a sound approximation of the behavior of a program. To do so, it links a
concrete semantics (the set of possible executions of the program in all pos-
sible execution environments), to an abstract semantics. Since the concrete
semantics is in general undecidable, the abstract semantics is chosen more
coarse-grained. Both semantics are related by abstraction and concretization
functions. Those functions must be chosen sound: any transformation in the
concrete semantics must be such that its counterpart in the abstract semantics
captures all possible outcomes of the concrete operation.

Static analyzers proceed by symbolic execution of the program, translating
all operations into the abstract semantics. If the abstract semantics uses infi-
nite domains, widening operations are introduced to ensure the convergence of
the analysis. Together with the soundness of the abstraction and concretiza-
tion functions, this ensures that the analysis terminates, and that it returns
an over-approximation of all concrete behaviors of the program.

3.1.1 Alarms

Value analysis computes an (over-approximated) set of possible values of each
variable at each point of the program. In particular, it makes it possible to
check whether an operation that can lead to an error at runtime (like a division
by zero, or an out-of-bounds access) is safe, by verifying the range of the
involved expression (respectively, the denominator of the division, the offset
of the pointer access) at the relevant program point. If the abstract semantics
guarantees that the undesirable values cannot occur, we have statically proved
that the execution of the operation will always succeed at runtime.

If the undesirable values cannot be excluded, value analysis reports a pos-
sible error by an alarm, expressed as an assertion that must be verified to
avoid the error. In this case, there are two possibilities. First, this alarm may
signal a real error: the operation fails at runtime on at least one execution.
Alternatively, when the reported error can never occur at runtime, we have a
false alarm, which stems from the difference in precision between the concrete
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and abstract semantics. Using more precise domains for the abstract semantics
typically results in less false alarms, at the expense of longer analysis time.

In Frama-C, alarms take the form of ACSL assertions. As an example,
an access t[i] to index i of an array t of size 15 gives rise to the assertion
assert 0 ≤ i < 15. Those alarms can afterwards be read and checked by other
Frama-C plugins.

Upon emitting an alarm, the analyzer also reduces the propagated state
accordingly. Typically, in the program below, at most one alarm is emitted for
the access to t[i]: if the first instruction evaluates correctly, the variable i is
necessarily within the proper range for the second instruction.

x = t[i] + 1;

y = t[i] - 3;

3.1.2 Abstract domains

This section describes the (non-relational) abstract domains propagated by
Value to represent the program state. A more complete description of this
hierarchy is given by Cuoq et al. [22].

Integer computations. Small sets of integers are represented as sets, whereas
large sets are represented as intervals with congruence information [37]. Con-
gruences are typically useful to represent offsets inside arrays of structures.
For example, in the program below, the array takes 160 bytes, and the offsets
x (expressed in bytes) in the array t of the fields i2 have the form x = 4j +1
for some j ∈ {0, 1, 2, . . . , 39}, that can be equivalently written as 1 ≤ x ≤ 157
and x ≡ 1 (mod 4).

1 struct s {

2 char i1; char i2; char i3; char i4;

3 };

4 struct s t[40];

5

6 void main(unsigned short k) {

7 char *p = &t[k+2].i2;

8 *p = 1;

9 }

Since k+2≥ 2, the first two elements t[0] and t[1] cannot be addressed by p,
and there is an out-of-bounds access when p is dereferenced at line 8 for k+2≥
40. So Value generates an assertion assert \valid(p) before the assignment
at line 8, and assumes afterwards that the address p of the byte modified at
line 8 is valid. Its possible offset x in t is computed as [9..157],1%4, which
means 9 ≤ x ≤ 157 and x ≡ 1 (mod 4).

Floating-point computations. The results of floating-point computations are
represented as IEEE 754 [41] finite intervals. All abstract operations take into
account IEEE 754-specified rounding for the program’s precision (single or
double). The analyzer by default assumes round-to-nearest-even mode, with
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an option to capture other IEEE 754 rounding modes and C implementations
that compute intermediate results at a precision other than indicated by the
expression’s type[42, §5.2.4.2.2:8].

In the following program, since the constant 1.6 cannot be represented
exactly as a C float and because of possible rounding errors, the possible
interval for f after line 3, taking into account all possible rounding modes, is
f ∈ [3.59999990463..5.60000038147].

1 void main(float f) {

2 //@ assert 2.0 <= f <= 4.;

3 f = f + 16.0 / 10;

4 }

Obtaining infinities or NaN as results of floating-point computations is treated
as undesirable errors. This is a conservative (sound) behavior, albeit a poten-
tially restrictive one, as some valid programs may be marked as potentially
invalid.

Pointers. The analyzer reasonably assumes that the program does not pur-
posely use buffer overflows to access neighboring variables. The memory model
employed to represent the state of a C program reflects this assumption: ad-
dresses are represented as offsets with respect to base addresses, that are always
manipulated symbolically, without consideration for the actual location of the
base addresses in the concrete virtual memory space during execution. The as-
sumption does not compromise soundness: an alarm is emitted for any invalid
(e.g. out-of-bounds) array or pointer accesses. If all such alarms are verified,
then the assumption is effectively guaranteed to hold.

Addresses are represented as maps using base addresses as keys. In the map
representing the set of values a particular pointer may have in the C program,
the sets of integers associated to each base address represent the possible offsets
with respect to this base. That is, {{ &t+[2..159] ; &u+{24} }} means all
addresses at an offset between 2 and 159 bytes starting from the base address
of the variable t, or the address “base address of u plus 24 bytes”.

The memory representation is untyped. This makes it straightforward to
handle unions and heterogeneous pointer conversions during abstract inter-
pretation. In an abstract address, the set of integers associated to a base is
always interpreted as an offset in bytes, regardless of the type of the pointer
and of the type of the base pointed into. A pointer to the second element of
an array t of integers, represented as t + 2 in the C program, is abstracted as
{{ &t+{8} }} when the analyzer is configured to target a 32-bit architecture,
where sizeof(int)=4.

Memory. Following the (verified) assumption that base addresses are sepa-
rated, an abstract memory state maps each base address to a representation
of a chunk of linear memory. For each such chunk, a memory state maps
ranges of bits in the chunk to values [8]. While byte-level reasoning is suffi-
cient for pointers (since a byte is the smallest unit of memory addressable by
a C pointer), bit-level reasoning is needed to handle bit-fields [42, §6.2.6.1:4],
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which compilers usually do not align on byte frontiers when a more compact
layout exists.2 Thus, using bit-expressed offsets is needed to remain compatible
with the layout strategy of standard compilers. Byte-level offsets are transpar-
ently scaled into bit-level ones when needed by multiplying the former by 8
(i.e. sizeof(char)).

The choice of intervals as keys, as opposed to an abstract representation
for “ith array cell” or “field f of struct s”, is intended to make practical the
handling of type-punning, i.e. the action of reading or writing values in a non
type-safe way.3 As an example, consider the code below.

unsigned int t[10];

void main(unsigned int x) {

t[0] = 0x000000F0;

t[1] = 0x000007F0;

unsigned char c = *(( char *)t+5)+1;

}

After the first two instructions, assuming a 32-bit representation for integers,
the memory is abstracted as

t 7→

{

[0..31] 7→ 0x000000F0

[32..63] 7→ 0x000007F0

To read from *(((char*)t) + 5), the analyzer determines that the relevant
value is to be found between the bits 40 to 47 of t; thus the binding at key
[32..63] is relevant in computing the result. The analyzer then extracts bits
8 to 15 from the value 0x000007F0 bound to this interval, resulting in the
singleton value 0x07 (assuming a little-endian representation). At the end of
the analysis, c is exactly equal to 0x08.

The C standard uses the adjective indeterminate to refer to the contents
of memory locations. This should not be confused with undefined behaviors
caused by illegal computations. In the example below, the contents of pointer
p after a call to function f are indeterminate, but the program is defined as
long as it does not read these indeterminate contents.

int *p;

void f(void) {

int l;

p = &l;

}

Having indeterminate contents in memory is not an undefined behavior,
but the C99 standard’s intention is that accessing an indeterminate mem-
ory location is. Examples include reading the contents of uninitialized local
variables, padding, and dangling pointers such as p after a call to f above.

2 The C standard itself does not specify the layout of bit-fields, but then again, it does
not specify the layout of any kind of data.

3 Type-punning is allowed when the lvalue used to access is of type char [42, §6.5.7] or
a union type (this has been made explicit in Technical Corrigendum 3 footnote 82 [42,
§6.5.2.3]).
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Value detects such programming errors. In order to do so, the values used
to represent a memory state are not directly from the abstract domain used
for the values of an expression, but from the lattice product of this domain
with two-valued domains, one for initializedness and padding, and the other
for danglingness.

Propagation of unjoined states. In order to improve precision, a user-settable
option allows to postpone the join of abstract states during the analysis. When
option -slevel k is set, up to k distinct abstract states are propagated un-
joined through each statement. By setting k to a high enough value, finite
loops can be unrolled entirely. Successive conditionals are also handled more
precisely. For a large part, this alleviates the need for relational domains, many
relations ending up encoded implicitly in the disjunction of abstract states.

3.1.3 Applications

Value has already been used with great success in both academic and indus-
trial contexts. Berthome et al. [6] propose a source-code model for verifying
physical attacks on smart cards. Pariente and Ledinot [59] verify flight control
system code using a combination of Frama-C plugins, including Value and
Slicing (§3.3). Yakobowski et al. use Value to check the absence of runtime
errors in a 50 kloc instrumentation and control (I&C) nuclear software [24].
Delmas et al. use Value to verify the control and data flows in a DO-178B-
certified aeronautics development [22].

3.2 Program dependency graph

In order to provide an (intra-procedural) view of the dependencies between the
different constructs of a function, Frama-C uses a plugin called Pdg. While
PDGs (Program Dependency Graph) [40] are typically a first step towards
program slicing, the precise dependency information they offer can also be
used for program optimization [31], or semantic code navigation [58].

The nodes of the PDG for a function f are essentially the instructions of f,
plus some special nodes for the arguments of the function, the declaration of
variables, etc. The four possible kinds of dependencies computed by Pdg are
the following:

Value dependencies are the most common. In an assignment x = a + b,
there is a value dependency from x to a and b, as their values are needed
to compute the new value of x.

Address dependencies are specific to languages with pointers, which in-
clude C. In an assignment x = *p, there is a dependency from the leftmost
part of the instruction to the value of p.

Control dependencies stem from jumps in the control flow. Typically, for
the program if (c) x = a; L: the value of x at point L depends on the
value of c.
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Declaration dependencies link a variable used in an instruction to its
declaration in the source code, and indirectly to the declaration of its type.

In the Pdg plugin, edges are computed differently depending on the kind
of dependencies, as explained hereafter.

3.2.1 Data (value and address) dependencies

Although technically different, value and address dependencies are related and
computed simultaneously by the Pdg plugin, using a forward dataflow anal-
ysis on the control-flow graph of each function. Each data node of the PDG
represents a value computation in the program. The propagated state is a map
similar to the one used by Value for the representation of pointers (cf Section
3.1.2), but instead of mapping memory locations to values, it maps them to
sets of PDG nodes. So at each program point, it is possible to find the PDG
nodes that are used to compute the value of a location.

Alias information is needed, in order to compute value or address depen-
dencies. For instance, after the sequence: p = &x; x = a; y = *p; y has an
address dependency on p, and a value dependency on a, to which *p evaluates.
Value’s results are used to expand pointers into the range of their possible
values, using the over-approximation of the memory states it computes.

3.2.2 Control dependencies

In structured langages, the general definition of control dependencies is given
considering paths in the control flow graph: a node N depends on a test node T
if some paths starting from T go to N, but not all. This means that whether N is
executed or not depends on the branch chosen at T. However, in unstructured
programs with unconditional jumps, such as the C goto, break and continue

statements, control dependencies become harder to compute. Even though
there is only one branch starting from an unconditional jump statement I,
there is a form of control dependency from I to the following statement in
the code S. Indeed, it the jump I was not present, the control would flow
directly to S.4 This issue has been identified in the literature, and we use the
solution proposed in [15]. We consider I as an if with one branch going to the
normal successor in the control-flow, and the other one going to S. Although
potentially imprecise, this is always correct [15].

Another difficulty lies in statement termination: every statement S that
follows a statement E that might not terminate should have a control depen-
dency on it since its execution depends on the termination of E. However,
those dependencies would lead to very imprecise results. As a design choice,
the Pdg plugin does not add them, and special care must be taken by plugins
that exploit the PDG and want to deal with non-terminating programs.

4 In particular, for program slicing, without a dependency S→I, I can be sliced out, while
S is still present in the slice. It may introduce new control flow not present in the original
program, and lead to incorrect slices [15,68].
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1 int abs(int x) {

2 int ret;

3 ret = x;

4 if (x < 0)

5 ret = -x;

6 return ret;

7 }

Decl x

In(x)

r e t  =  x ;

x  <  0

re t  =  -  x ;

Decl ret

re turn  ( re t ) ;

OutRet

Fig. 2 Example of a PDG

3.2.3 Example of a program dependency graph

A function abs and its PDG are shown in Fig. 2. Data (resp. declaration, con-
trol) dependencies are represented as plain (resp. dotted, circle-ended) edges.
There is a single control dependency, between lines 4 and 5, as the latter gets
executed only if the condition x < 0 holds. There are three data dependencies
(lines 3, 4, 5) on the initial value of the formal variable x; this initial value is
materialized by the node In(x). The assignments to ret at lines 3 and 5 give
rise to two declaration dependencies on this variable. However, the dependen-
cies on the declaration of x are not needed at lines 3, 4, 5, as they are implied
by the data dependencies on In(x), which itself depends on the declaration of
x. Finally, the OutRet node represents the output of the function, hence the
data dependency on the value being returned.

3.2.4 Function calls

The Pdg plugin builds a unique PDG for each function, regardless of the
number of contexts the function is called in. This is a precision trade-off, as
building fully contextual PDGs is very costly in terms of computation and
memory space.

Within the PDG for a function g, a call to a function f is represented in
an abstracted form. Only the inputs and outputs of f exist as PDG nodes,
with data dependencies edges linking the outputs to the inputs that are used
to compute them. Typically, a call to the function f below

void f() {

z = y;

w = x;

z = z + w;
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}

will be summarized by four nodes and three edges:

– two inputs nodes In(x) and In(y), for x and y;
– two output nodes Out(z) and Out(w), for z and w;
– three dependency edges from Out(z) to In(x), from Out(z) to In(y), and

from Out(w) to In(x).

Those data dependencies are called functional dependencies [26], and com-
puted by the plugin From of Frama-C (using the results of Value). Notice
there is a link between those nodes and the PDG of the called function: they
consist in the transitive closure of the data dependency edges of the PDG,
retaining only the input and output nodes.

While this representation is concise and compositional, it can lead to some
precision loss, typically for functions receiving pointers as arguments. Consider
the code below.

int a, b;

void f(int *p) {

(*p)++;

}

void main() {

f(&a);

f(&b);

return b;

}

The PDG nodes for a call to f in the PDG of main would include two input
nodes In(a), In(b) and two output nodes Out(a), Out(b). There would be
four data dependencies, from Out(a) to In(a) and In(b), and from Out(b)

to In(a) and In(b). This is an unfortunate byproduct of evaluating pointers
to all their possible values — and things would get more intermingled with a
third call, say f(&c).

Still, it is possible to recover the aforementioned form of context-sensitivity,
leading to simpler, more precise PDG. The plugin From can optionally pro-
duce callwise results, i.e. one result per function call. In our example, it cor-
rectly infers that the call f(&a) does not involve b at all. Thus, in the PDG
of main this call is represented by only two nodes In(a) and Out(a) with a
single data dependency from Out(a) to In(a). Likewise, the call f(&b) only
requires two b-labeled nodes. The resulting PDG for main is much more pre-
cise, as it shows that the two calls are independent (they operate on different
memory zones), and could in fact be reordered. Such context-sensitive PDGs
are useful to gain precision for programs calling functions that take pointers
as arguments, with different values for different calls, in particular, memcpy or
strlen.

3.3 Dependence-based program slicing

Program slicing [69,70] consists in the computation of the set of program
instructions (the program slice), that may influence the program state at some
point of interest (referred to as a slicing criterion). As an example, a slice of
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a program at a given point p and a given variable x corresponds to the set of
statements that might affect the value of said variable x at point p.

From a programming standpoint, program slicing is a very useful tool, as it
can considerably simplify the portion of code that must be considered. It can
be used e.g. for improving program comprehension, debugging or refactoring
code, etc. For example, the Slicing plugin of Frama-C automatically dis-
cards function arguments that are not related to the current slicing criterion
(see e.g. [61] for such a transformation on functional programs). This is remi-
niscent of amorphous slicing [51]. Also, the Slicing plugin optionally performs
specialization: the body of a function can be duplicated, and sliced differently
for different call sites. To the best of our knowledge, no other full-scale slicing
tool offers this facility.

Finally, in the context of Frama-C, the program slice should still be a com-
pilable, executable program on its own, and well-defined; indeed Frama-C’s
various analyses must be usable on the resulting program. Frama-C’s slicing
is static, as it is built on top of the results of Pdg and Value— that are
themselves static analyses.

3.3.1 Slicing criteria

Within the Slicing plugin of Frama-C, a wide range of slicing criteria can be
given, either regarding code observation or logical properties of the program.
In the case of code observation, several elements can be marked as elements
to be preserved in the resulting slice. Slicing can be made on:

– program statements;
– function calls and returns;
– read and write accesses to selected left-values of the code;
– values of a global variable after the execution of the main function;
– logical annotations.

Slicing on function returns (e.g., for functions f1, . . . , fn ) ensures for example
that each time these functions do indeed return in the original code, their sliced
counterparts also terminate with the same return value.

The Slicing plugin of Frama-C also has the ability to be used on logical
properties specified in ACSL. In this case, properties verified by the sliced
code are ensured to be verified by the initial code. This can be used to slice
function assertions, loop variants and invariants or threats emitted by the
value analysis plugin. This last possibility is the one used by the Sante tool.

Finally, Slicing is able to handle a conjunction of atomic slicing criteria.
The resulting slice is in general different from a superposition of all the indi-
vidual slices, as more statements may need to be kept. By construction, the
slice will verify all the slicing criteria simultaneously.

3.3.2 Slicing in case of non-termination

Slicing is sound in presence of potentially infinite loops, according to the
following semantics: all execution traces that reach the criterion in the original
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int X, Y;

void g (int x, int y) {

X = x;

Y = y;

}

int fX (int x, int y) {

g (x, y);

return X;

}

int fY (int x, int y) {

g (x, y);

return Y;

}

int main (int i1 , int i2 ,

int i3 , int i4)

{

return

fX (i1 , i2) + fY (i3 , i4);

}

Fig. 3 Original program

int X, Y;

void g__2(int x) { X = x; }

void g__1(int y) { Y = y; }

int fX(int x) {

g__2(x);

return X;

}

int fY(int y) {

g__1(y);

return Y;

}

int main(int i1 , int i4) {

return fX(i1) + fY(i4);

}

Fig. 4 Program slice with specialization

program will exist in the sliced one, and will validate the criterion identically.
This however means that a criterion that involves an instruction S located
after a potentially infinite loop will get interpreted for all executions that
reach S, i.e. when the loop terminates. In those cases, special care may be
required to keep the reason for non-termination. Typically, this can be done
e.g. by adding to the slicing criterion the while (1) or while (c) statement
of the loop. In this paper, we focus on the version of the Sante tool that
treats terminating programs, so the issue for non-terminating programs is not
discussed here further.

3.3.3 Computing the slice

Once a PDG for the given program has been computed, the problem of slicing
is partially reduced to the problem of the reachability of a given node in this
graph [40]. However, the implementation of the slicing part itself is highly
non-trivial, for at least two reasons:

1. the PDG is intra-procedural, thus the slicing must handle all the inter-
procedural part of the computations;

2. in presence of multiple calls to the same function, the slicing may decide
to keep statements that are not relevant for one particular call.

The slicing plugin associates a mark to every PDG node. Initially, the
mark bottom is given to all nodes, except those that are directly relevant to
the slicing criterion. Then, the non-bottom marks are propagated backwards,
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following the PDG. For example, if an instruction x = a + b in a function f is
marked as needed, the PDG is queried to get the nodes of all the instructions
that directly influence the values of a and b. Those nodes are then marked as
needed, and the process is iterated. If no such node exists within f, we consult
the PDG of all its callers, above the instructions where f is called.

During this process, we may decide to keep some instructions or sub-
instructions only because we want a compilable program. Consider for example
the program in Fig. 3, where the slicing criterion is the value returned by main.
We need to keep both arguments of g, because x is needed for the call to fX,
and y for the one to fY. However, the argument y in the call to g in fX is
not useful, and conversely for x in fY. As a result, the slicing marks i2, i3, y
in fX and x in fY as spare – meaning “not relevant for the criterion, only for
compilation”. Although this is not visible in the program slice, the difference
can be observed on the original code, in Frama-C’s graphical user interface.

As mentioned above, one can also ask for the specialization of some func-
tions. In the code of Fig. 3, this is especially useful for g, which is called twice.
The resulting slice is shown in Fig. 4, with some minor reformatting; no spare
marks remain. Together with the fact that the returned code is executable,
this functionality makes of the Slicing plugin of Frama-C a very precious
tool to analyze various aspects of given code.

3.4 The Colibri constraint solving library

Constraint solving techniques are widely recognized as a powerful tool for
Validation and Verification activities such as test data generation or counter-
example generation from a formal model [52,53,47], program source code [35,
34,56] or binary code [2]. A constraint solver maintains a list of posted con-
straints (constraint store) over a set of variables and a set of allowed values
(domain) for each variable, and provides facilities for constraint propagation
(filtering) and for instantiation of variables (labeling) in order to find a solu-
tion.

In this section we present the Colibri library (COnstraint LIBrary for
veRIfication) developed at CEA LIST and used inside the PathCrawler

tool for test data generation purposes. The variety of types and constraints
provided by Colibri makes it possible to use it in other testing tools at
CEA LIST like GATeL [53], for model based testing from Lustre/SCADE,
and Osmose [2], for structural testing from binary code.

3.4.1 General presentation

Colibri provides basic constraints for arithmetic operations and comparisons
of various numeric types (integers, reals and floats). Cast constraints are avail-
able for cast operations between these types. Colibri also provides basic pro-
cedures to instantiate variables in their domains making it possible to design
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different instantiation strategies (or labeling procedures). These implement spe-
cific heuristics to determine the way the variables should be instantiated during
constraint resolution (e.g. a particular order of instantiation) and the choice
of values inside their domain (e.g. trying boundary or middle values first).
Thus the three aforementioned testing tools have designed their own labeling
procedures on the basis of Colibri primitives.

The domains of numerical variables are represented by unions of disjoint
intervals with finite bounds (no infinities or NaNs): integer bounds for inte-
gers, double float bounds for reals, and double/simple float bounds for dou-
ble/simple floating point formats. These unions of intervals make it possible
to accurately handle domain differences. For each numeric type and each basic
unary/binary operation or comparison, Colibri provides the corresponding
constraint.

Moreover, for each arithmetic operation, additional filtering rules apply al-
gebraic simplifications, which are very similar for integer and real arithmetics,
whereas floating arithmetics uses specific rules. Here are a few examples of
basic algebraic simplifications.

– Factorization of constraints. If the constraint store contains A + B = C

and a new contraint A + B = X is added (or derived) in the store, then
only one of these two constraints remains in the store and the variables C
and X are unified, that is, they are identified and their domain is set to
the intersection of the domains of C and X.

– Special values (neutral elements, absorbing elements). The constraint A+
0 = X leads to the unification of A and X.

– Identities between arguments. The constraint A + A = C is transformed
into 2 ∗ A = C which is more precisely handled by interval arithmetics.
The constraint A + X = A in integer and real arithmetics leads to the
unification of X with 0 (which is not valid in floating point arithmetics, cf
Section 3.4.4).

3.4.2 Bounded and modular integer arithmetics

Colibri provides two kinds of arithmetics for integers: bounded arithmetics
for ideal finite integers and modular arithmetics for signed/unsigned computer
integers.

Bounded arithmetics is implemented with classical filtering rules for inte-
ger interval arithmetics. These rules are managed in the projection functions
of each arithmetic constraint. Moreover, a congruence domain is associated
to each integer variable. Filtering rules handle these congruences in order to
compute new ones and maintain the consistency of interval bounds with con-
gruences (as in [49]). The congruences are introduced by multiplications by a
constant and propagated in the projection functions of each arithmetic con-
straint.

Modular arithmetics constraints are implemented by a combination of
bounded arithmetics constraints with modulus constraints as detailed in [36].
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Thus they benefit from the mechanisms provided for bounded integer arith-
metics. Notice that using the unions of disjoint intervals for the domain rep-
resentation makes it possible to precisely represent the domain of signed/un-
signed integers. For example, consider the constraint A+23 B = C over 3-bit
unsigned integers where A ∈ 2..4, B ∈ 4..7 and C ∈ 0..7. This constraint is
handled by the constraints corresponding to the bounded arithmetic expres-
sion C = A + B −K ∗ 8 where K ∈ 0..1 represents the overflow status. The
filtering of these constraints converges to the interval C ∈ [0..3, 6..7] where the
sub-interval 0..3 of C is reached when there is an overflow (i.e. K = 1). The
domain representation by compact intervals in this case would be less precise
and result in a complete interval C ∈ [0..7] without any reduction.

3.4.3 Example of test generation in bounded vs. modular arithmetics

Suppose that the constraints for the program path π executing the lines 3,4,5,6
in the program below are incrementally posted to Colibri in order to generate
a test for this path.

1 int f(int x) {

2 int y;

3 if(x >= 0)

4 y = x + 1;

5 if(y < x)

6 y = 0;

7 return y;

8 }

Assume that logical variables X and Y represent the values of x and y, and the
initial domain of the input is X ∈ [MinInt..MaxInt]. Posting the constraint
X ≥ 0 reduces the domain of X to [0..MaxInt] in any kind of arithmetics.
If bounded arithmetics (without overflows) is used, then posting the second
constraint Y = X+1 activates filtering rules for the plus constraint and results
in the following constraints and domains:

Y = X + 1, X ∈ [0 .. MaxInt− 1], Y ∈ [1 .. MaxInt].

Posting the third constraint Y < X activates filtering rules again, and Colibri

reports that the constraints have no solution. The desired path π cannot be
activated without overflows.

If modular arithmetics (with authorized overflows) is chosen, then
MaxInt+1 = MinInt, thus posting the second constraint Y = X +1 results
in

Y = X + 1, X ∈ [0 .. MaxInt], Y ∈ [MinInt] ∪ [1 .. MaxInt].

When the third constraint Y < X is posted, Colibri finds the unique solution
and generates a test X = MaxInt activating the chosen path π.
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3.4.4 Real and floating point arithmetics

Real arithmetics is implemented with classical filtering rules for real interval
arithmetics where interval bounds are double floats. In real interval arithmetics
each projection function is computed using different rounding modes for the
lower and the upper bounds of the resulting intervals. The lower bound is
computed by rounding downward, towards −1.0Inf (i.e. −∞), while the upper
bound is computed by rounding upward, towards +1.0Inf (i.e. +∞). This
enlarging ensures that the resulting interval is the smallest interval of doubles
including all real solutions.

Floating point arithmetics is implemented with a specific interval arith-
metics as introduced by Claude Michel in [55]. Notice that properties like
associativity or distributivity do not hold in floating point calculus. The pro-
jection functions in this arithmetics have to take into account absorption and
cancellation phenomena specific to floating point computations. These phe-
nomena are handled by specific filtering rules allowing to further reduce the
domains of floating point variables. For example, the constraint A+F X = A

over floating point numbers means that X is absorbed by A. The minimal ab-
solute value in the domain of X can be used to eliminate all the values in the
domain of A that do not absorb this minimum. Thus, in double precision with
the default rounding mode (called nearest to even), for X = 1.0 the domain
of A is strongly reduced to the union of two interval of values that can absorb
X:

[MinDouble .. − 9007199254740996.0, 9007199254740992.0 ..MaxDouble ].

Colibri uses very general and powerful filtering rules for addition and
subtraction operations as described in [54]. For example, for the constraint
A+B = 1.0 in double precision with the nearest to even rounding mode, such
filtering rules converge to the same interval for A and B

[−9007199254740991.0 .. 9007199254740992.0].

3.4.5 Implementation details

Colibri is implemented in ECLiPSe Prolog [62]. Its suspensions, generic uni-
fication and meta-term mechanisms make it possible to easily design new ab-
stract domains and associated constraints. Incremental constraint posting with
on-the-fly filtering and automatic backtracking to a previous constraint state
provided by Colibri are important benefits for search-based state exploration
tools, and in particular, for test generation tools.

To conclude this short presentation of Colibri, let us remark that the
accuracy of its implementation relies a lot on the use of union of intervals and
the combination of abstract domain filtering rules with algebraic simplifica-
tions. Experiments in [3] using SMT-LIB benchmarks show that Colibri can
be competitive with powerful SMT solvers.
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3.5 Concolic test generation with PathCrawler

PathCrawler [46] is a unit structural testing tool based on the Frama-C

abstract syntax tree and the Colibri constraint solver. PathCrawler’s prin-
cipal functionality is to automatically generate test inputs to guarantee all-
path coverage of the C function under test. It can also be used to satisfy
other coverage criteria (like k-path coverage restricting the all-path criterion
to paths with at most k consecutive loop iterations, branch coverage,...), to
signal anomalies such as uninitialized variables or integer overflow, or to dis-
cover the symbolic calculation effected by each execution path. Below, we will
mainly consider the use of PathCrawler to test all feasible execution paths.

PathCrawler [72,73] is based on a method which was subsequently bap-
tized concolic, i.e. it uses a combination of concrete test inputs and sym-
bolic reasoning. Like other concolic tools (CUTE [63], PEX [67], SAGE [33],
EXE [10], KLEE [9]) PathCrawler runs the program under test on each
test case in order to recover a trace of the execution path. However, in Path-

Crawler’s case actual execution is chosen over symbolic execution merely
for reasons of efficiency and to demonstrate that the test does indeed activate
the intended execution path. Unlike other concolic tools, PathCrawler does
not use actual execution to recover the concrete results of calculations that
it cannot treat. This is because these results can only provide an incomplete
model of the program’s semantics and PathCrawler aims for complete cov-
erage of a certain class of programs rather than for incomplete coverage of any
program. Indeed, incomplete coverage often enables many bugs to be detected
but PathCrawler was designed for use in more formal verification processes
where coverage must be quantified and justified. If a branch or path is not
covered by a test, then unreachableness of the branch or infeasibility of the
path must be demonstrated.

The use of PathCrawler for classification of alarms for potential run-
time errors in the Sante method also demands completeness. If all feasible
program paths of the program (or a program slice) are covered and the paths
leading to the error state for an alarm present in the program (resp., in the
slice) are all infeasible, then this alarm is a false alarm. Other concolic tools,
that use approximated constraints and incomplete path exploration, cannot
ensure that a path is infeasible. Simplifying the original program by program
slicing increases the chances to fulfil a complete path exploration on a smaller
slice and to confirm or infirm more alarms. Partial path exploration (stopped
by a timeout or with a partial k-path criterion) cannot classify an alarm as a
false alarm, but can still confirm it if a counter-example was found.

Another example of where completeness is necessary is the measurement
of execution time. PathCrawler can be used to generate tests to activate all
feasible execution paths, or a set of the slowest execution paths [74], in order
to measure the effective execution time on the target architecture (or on a
simulator) of each path. If certain hypotheses hold, then the longest execution
time found by this method can be considered to be the maximum execution
time of the program under test [71].
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1 #define N 5

2 typedef int perm[N];

3 int getOrder(perm p){

4 perm q, t;

5 int i, k=1, isId;

6 for(i=0; i<N; i++)

7 q[i]=p[i]; //Now q = p

8 while (1){ //Here q = pk

9 // Check if q = pk = Id
10 // if so , we are done

11 for(i=0,isId =1;i<N && isId;i++)

12 isId = isId && (q[i]==i);

13 if( isId ) return k; // Done

14 for(i=0; i<N; i++)

15 t[i]=q[i]; // Now t = pk

16 for(i=0; i<N; i++)

17 q[i]=t[p[i]]; // Now q = tp = pk+1

18 k++;

19 }

20 }

Fig. 5 Function getOrder takes a permutation p of {0, 1, . . . , N − 1} and returns its order

A final example is the detection of unreachable code. Some unreachable
code can be detected by static analysis (e.g. value analysis, cf Section 3.1)
but the only way to ensure detection of all instances of unreachable code is to
demonstrate the reachability of each block of code, for example by generating
a test to activate it. This requires complete statement coverage.

Consider the program of Fig. 5 studied in [44]. Given a permutation p of
0, 1, . . . , N−1, that is, a bijection p : {0, 1, . . . , N−1} → {0, 1, . . . , N−1}, the
function getOrder computes the order of p, that is, the smallest integer k ≥ 1
such that pk is identity Id. The algorithm is straightforward: the consecutive
powers pk, k = 1, 2, 3, . . . , are computed and stored in q (lines 6–7, 14–17).
As soon as q = Id, the order k is returned (lines 11–13). The statement at
line 17 gives rise to constraints with symbolic array indices depending on the
inputs, and all-path testing has to deal with these constraints. Kosmatov [44]
shows that complete path coverage for programs with this kind of constraints
is particularly difficult to achieve if path constraints are approximated, or
concrete results try to replace exact constraint resolution. For example, CUTE
fails to meet all-path coverage on this program already for N = 5 (program
with 16 feasible paths). After being stopped by a 12-hour timeout, CUTE
achieves 10% path coverage for N = 7 (with 62 paths) and 1% coverage for
N = 8 (with 110 paths), while PathCrawler covers 100% paths within
a few minutes [44]. Together with symbolic array indices, symbolic pointer
offsets, double (multiple) pointers and complex arithmetic computations are
other examples of features leading to complex constraints that are sometimes
approximated by other concolic tools.

3.5.1 The limits to completeness

The theoretical limit to completeness of test coverage is the complexity of
the underlying constraint resolution. All-path test generation is NP-hard (see
e.g. [45, Sec. 4]) and indeed some programs will always give constraint sys-
tems which the solver cannot resolve (or demonstrate as inconsistent) in a
reasonable time. When this occurs, the test generation tool can only interrupt
constraint resolution after a certain time and report that the corresponding
path is probably infeasible but that this cannot be demonstrated. This problem
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is usually only posed by functions under test which implement certain types
of numerical algorithm, in which the branch conditions involve the results of
complex calculations.

Another type of limit to complete path coverage concerns the sheer num-
ber of feasible execution paths. This suffers from a combinatorial explosion
in the presence of loops with input-dependent limits, cascades of conditional
instructions, function calls, etc. If complete coverage is really necessary then
the user must ensure that the code can be decomposed into reasonably small
modules (in terms of control flow rather than lines of code).

3.5.2 Implementing completeness

Complete coverage, within the limits mentioned above, implies that Path-

Crawler must translate each and every C instruction (and call to a library
function) into constraints over variable values (and library functions must
be given complete stubs). Colibri can treat non-linear arithmetic and pro-
vides specialized constraints for modular integer arithmetic and floating-point
arithmetic. Within PathCrawler, further specialized constraints have been
developed to treat bit operations, casts, dynamic allocation, arrays with (any
number of) variable dimensions and array accesses using variable index values.
Indeed, array accesses using variable indices pose two different problems. In
the case of the value on input of an element of an input array, treatment of
a variable index is based on an element constraint that represents the fact
that the element could be any one of the known array elements. In the case
of arrays with variable dimensions, this constraint is dynamically updated
to take further elements into account as necessary. The other problem con-
cerns the internal aliases arising from successive operations on the same array
(or memory zone) when one or more operations use variable indices. These
aliases are treated by constructing the constraints to model each combination
of equalities and disequalities of the elements involved in the successive opera-
tions. The different possibilities are explored one by one by assimilating these
internal alias constraints to extra path predicate constraints.

The attempt to correctly treat all C instructions is ongoing but Path-

Crawler can already treat a large class of C programs.

3.5.3 Test generation with Constraint Logic Programming

Development of specialized constraints is facilitated by the fact that, unlike
other concolic tools based on black-box SAT, linear or SMT solvers, Path-
Crawler and Colibri are both implemented in Constraint Logic Program-
ming (CLP). As explained in Section 3.4.5, CLP, and in particular the Eclipse
language [62] enables low-level control of constraint resolution. Path predicate
constraints can be incrementally added to the solver, just activating the fil-
tering mechanism which can detect some inconsistencies relatively cheaply (cf
Sec. 3.4.3). Full constraint resolution is only activated to create a new test
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case (or demonstrate infeasibility if a test case cannot be found) when a new
path predicate is formed.

Thanks to CLP, the resolution of new path predicates has been optimized in
PathCrawler. Indeed, when concolic test generation forms a new path pred-
icate by negating the final branch condition of a feasible path predicate [73],
the resulting constraint system has a specific property. The path prefix up to
the negated condition is known to be feasible (because it formed part of the
path covered by a previous test case) so any infeasibility must be due to the
final, negated, condition. PathCrawler optimizes constraint resolution by
interrogating the constraint store to find which variables are either directly
constrained by the final branch condition, or indirectly constrained by being
linked by another constraint to a directly constrained variable. The closure
of the constraints linking the variables directly constrained by the negated
condition is the minimal constraint system which must be solved. The other
constraints in the path predicates form one or more other, completely sepa-
rate, constraint systems. These other systems already have a solution in the
previous test cases which covered the path prefix up to the negated condition.
PathCrawler therefore uses the values from a previous test case for these
variables and just tries to solve the minimal system. Similar optimizations
based on constraint independence have been used by Cadar et al. [9]. CLP
has also enabled the development of specialized labeling procedures (cf Sec-
tion 3.4.1) based on the properties of the arithmetic and other, specialized,
constraints.

To illustrate using CLP in PathCrawler, consider the following program
cmpVectors that, given two vectors V1 = (X1, Y1) and V2 = (X2, Y2), checks
if both coordinates of V1 are equal to (or greater, or less than) the respective
coordinates of V2. Let us denote a program path by line numbers indicat-
ing for the sake of clarity by a “+” and “−” indices respectively true and
false branches of conditional statements. Suppose PathCrawler has gener-
ated first the test case (X1, Y1, X2, Y2) = (16, 18, 16, 15) executing the path
6+, 7−, 9+, 10+, 11. PathCrawler explores program paths in a depth-first
search. The next partial path to be covered, obtained by negating the final
branch condition 10+ (i.e. Y1 ≥ Y2), is 6

+, 7−, 9+, 10−. Since the negated con-
straint is disjoint from X1 and X2, PathCrawler reuses the values for X1

and X2 from the previous test case and has to solve a smaller set of constraints
Y1 < Y2. Suppose it generates a second test case (16, 0, 16, 18) activating the
path 6+, 7−, 9+, 10−, 12+, 13+, 14. Next it tries and fails to find a test case for
infeasible partial path 6+, 7−, 9+, 10−, 12+, 13−, and so on.

CLP offers an efficient backtracking mechanism which is also used to opti-
mise PathCrawler’s performance. Indeed, concolic test generation is based
on the opportunistic enumeration of successive paths in order to treat the rel-
atively simple constraint system representing the predicate of a single feasible
path, rather than attempting to treat the more complex system represent-
ing all paths at once. PathCrawler explores the binary tree of all feasible
execution paths in source code which has been simplified and expanded so
as to decompose multiple conditions, inline function calls, unroll loops, etc,
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1 typedef unsigned int uint;

2

3 char cmpVectors(

4 uint x1 , uint y1 ,

5 uint x2 , uint y2){

6 if(x1==x2)

7 if(y1==y2)

8 return ’=’; // V1=V2

9 if(x1 >=x2)

10 if(y1 >=y2)

11 return ’>’; // V1 >V2

12 if(x1 <=x2)

13 if(y1 <=y2)

14 return ’<’; // V1 <V2

15 return ’!’; // otherwise

16 }

Fig. 6 Function cmpVectors compares two given vectors V1 = (X1, Y1) and V2 = (X2, Y2)

and even enumerate possible internal alias combinations, as described above.
The atomic constraint attached to each node in this tree of feasible execution
paths is first treated with the truth value it has in at least one feasible path
and then one single attempt is made to negate it. As a result, the smallest
possible number of calls to full constraint resolution is made. Moreover, the
built-in backtracking mechanism of CLP automatically stores, on the stack,
the constraint system associated with the path prefix leading to each node so
that it does not have to be reconstructed to explore negation of the constraint
attached to the node. In the previous example, the backtracking mechanism
ensures that, once posted, the constraint X1 = X2 (line 6+) will not be with-
drawn until all paths starting with 6+ have been explored, so constraint solv-
ing for the following test cases does not have to treat it again. The shortest
infeasible path prefixes are detected before any time has been wasted devel-
oping and exploring their ramifications. So, the solver will never be called for
(structurally possible) partial paths 6+, 7−, 9−, 12+, 13+ or 6+, 7−, 9−, 12− in
cmpVectors since a shorter partial path 6+, 7−, 9− will be detected as infeasi-
ble. PathCrawler’s treatment of many constructions is based on the same
philosophy of treatment of what is known to be feasible, whilst creating CLP
backtracking choice points on the stack, so that the other possibilities can be
subsequently explored.

3.5.4 Adaptation of the all-path test generation

This section illustrates a simple program instrumentation performed by Sante

thanks to the services provided by Frama-C. In Sante, the role of test gener-
ation is to activate potential threats, i.e. to cover execution paths in which the
associated alarms are triggered. Technically, in order to force test generation
to activate potential errors on each feasible program path in a program p, we
add special error branches into the source code of p in the following way. For
each alarm, the corresponding statement, say

threatStatement ;

is automatically replaced by the following branching statement:

if( errorCondition )

error ();

else
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threatStatement ;

where the condition determines if the error reported by the alarm occurs. Test
generation is then executed for the C program with error branches denoted p′.
We call this technique alarm-guided test generation. If the error condition is
verified in p′, a run-time error can occur in p, so the function error() reports
the error and stops the execution of the current test case. If there is no risk
of run-time error, the execution continues normally and p′ behaves exactly
as p. The transformation of p into p′ adds new branches for error and error-
free states so that PathCrawler algorithm will automatically try to cover
error states. For an alarm a, PathCrawler may confirm it as a bug when it
finds an input state and an error path leading to the bug. PathCrawler may
also prove that the alarm is safe when all-path test generation on p′ terminates
without activating the corresponding threat. When all-path test generation on
p′ does not terminate, or when incomplete test coverage criterion was used (e.g.
k-path), no alarm is classified safe. Finally, all alarms that are not classified
as bug or safe remain unclassified or unknown.

4 SANTE tool architecture

This section describes tool integration solutions used in Sante. We present
first the plugin-oriented architecture of Frama-C and the services provided
by the platform to plugins. Then we describe how the analyzers presented in
the previous section were integrated in Sante.

4.1 Frama-C’s plugin architecture

Frama-C has an open plugin-oriented architecture structured around a kernel
that provides services to all plugins [17]. Those services include:

– an abstract syntax tree (AST) for ISO C99 code, based on a modified
version of the CIL framework [57];

– a logic layer on top of the C AST, that implements most of the ACSL

specification language [4];
– a notion of statuses for logical assertions, with an inter-plugin consolida-

tion. Different properties of a function can be proven by different plugins
[18];

– a powerful notion of projects, so that plugins can perform their analyses
on different views of the source code without involuntarily interfering [64];

– generic and unified mechanisms to parse (per-plugin) command-line op-
tions, or to emit messages;

– a dynamic API in which plugins register the functions they want to export.
Those functions can be called by other plugins, in a fully type-safe way [65].
(Frama-C is written in OCaml, which is a strongly typed language [28].)
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Frama-C’s notion of projects is at the heart of the framework. Plugins
that need to modify the AST never do so in-place: some other plugins may
have computed results on the current program, that may become inconsistent
after a modifcation. Instead, the kernel can duplicate the AST into a new
project, which shares no mutable data-structures with the previous ones. This
is typically the approach used by the Slicing plugin, which creates a new
project (hence C program) per user slicing request. The resulting new program
can then be analyzed as an isolated, separate entity.

Inside the platform, Value and some of the plugins based on it (Pdg,
Slicing) use highly-optimized datastructures. Typically, hash-consing [23] is
employed to increase performance and reduce memory consumption. Those
structures include generic lattices for products or sets, maps from bits to ar-
bitrary values, etc. They can be reused as-is, for example to query the results
of those plugins. Or, they can be instantiated to better suit the needs of the
plugin developers.

The plugin API of Frama-C has already been used with great success to
develop new plugins, either by industrial users [22], or academics [29,43].

Community. Frama-C is characterized by a very active community behind
it. First, the main Frama-C developers are available to answer questions on a
public mailing list. Worldwide academic, industrial users and external plugin
developers are also present on this list to ask and answer questions.

Besides, a bug tracking system, a wiki and a blog are available to interact
with this community and to inform on what is going on within Frama-C.
Those various media are available through the unique support webpage5.

4.2 Tool integration in Sante

The integration of the underlying tools used in Sante was realized within the
Frama-C platform and strongly relies on its functionalities. It is illustrated
by Fig. 7 where rectangular forms indicate Frama-C plugins, while ovals show
some of the basic techniques they use. An arrow indicates that a plugin calls
another one.

We developed a new plugin, called SanteController, that calls different
analyzers and implements the Sante method described in Section 2. Sante-
Controller executes the following tasks:

1. It asks the Value plugin to perform the value analysis on the analyzed
program. The results of this analysis are recorded with the AST and can
be reused by other plugins.

2. It gathers the emitted alarms directly from the AST.
3. It constructs the subsets of alarms that will be used as slicing criteria.

Dependency analysis is called if an advanced slicing option (taking into
account alarm dependencies) was provided. Dependency analysis uses di-
rectly the results of value analysis without calling it again.

5 http://frama-c.com/support.html
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Fig. 7 The Sante tool architecture

4. The Slicing plugin is then asked to simplify the program with respect
to each subset of alarms. The results of dependency analysis, if already
computed, can be used without being computed again.



Behind the Scenes in SANTE 27

5. Each simplified program is then adapted (as explained in Section 3.5.4)
and analyzed with PathCrawler. It can read the C program directly
from the AST constructed by Slicing without parsing the program again.

6. The diagnostic is constructed.

SanteController is not distributed with the open source version of
Frama-C (which includes Value, Pdg and Slicing) because it requires an
installation of PathCrawler, proprietary tool of CEA LIST.

As mentioned above, Value, Pdg and Slicing plugins strongly rely on
the Frama-C kernel. The first step of PathCrawler, called PC Analyzer,
also uses the services provided by Frama-C. From an AST inside Frama-C,
PC Analyzer instruments the C program (to prepare concrete execution that
will trace the program path executed by a test case) and translates its instruc-
tions into constraints (to prepare symbolic execution). It uses the primitives
provided by the kernel of Frama-C to create a new analysis project and to
manage it. It also uses Frama-C primitives to copy the AST of the analyzed
program in a newly created project and to manage ASTs. It traverses the AST
to collect the necessary information for the intermediate files using the visitor
PathCrawlerVisitor developed for this purpose, that inherits from the visitor
provided by the kernel of Frama-C. PC Analyzer is also well situated to
exploit other analyzers distributed with Frama-C. It allows PathCrawler

to accept information provided by other plugins.

5 Evaluation

In this section, we evaluate the Sante tool from both theoretical and archi-
tectural points of view. We present first a summary of our experiments on
several real-life programs and detail the results for a representative example.
Then we report on the tool design and implementation issues.

5.1 Experiments on real-life programs

In this section, we provide experiments for Sante with and without slicing and
compare them with one another, with value analysis alone (denoted VA) and
with dynamic analysis alone (denoted DA). The VA method uses the value
analysis plugin Value of Frama-C. The DA method uses PathCrawler

alone, in alarm-guided mode for the exhaustive list of all potential threats
(without filtering by value analysis and slicing) and considers each threat as
an alarm. The Sante−slicing method uses Sante with the option that skips
the program slicing step and goes directly to the dynamic analysis step after
the value analysis step. The Sante+slicing method uses Sante with program
slicing to simplify the program before the dynamic analysis step. The results
are shown in Fig. 8.

We use nine examples extracted from real-life software where bugs were
previously detected. The examples have been chosen randomly, taking into ac-
count error types and C language features already supported by Sante. The
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No module
threats

DA VA Sante−slicing Sante+slicing
function � ? � � ? � ? � � ? �

1
Apache

8
7 0 1 4 4 7 0 1 7 0 1

escape absol- 22s 1s 14s 11s
ute uri(simp.) 86 nodes - 39 nodes 37 nodes

2
Apache

16
15 0 1 11 5 15 0 1 15 0 1

escape absol- 20s 1s 10s 7s
ute uri(full) 63 nodes - 52 nodes 32 nodes

3
Spam Assassin

17
0 17 0 2 15 15 0 2 15 0 2

message write TO 1s 8min 43s 8min 43s
67∗ nodes - 66 nodes 48 nodes

4
Apache

12
0 9 3 0 12 0 9 3 4 5 3

get tag TO 1s TO 54s+1TO
778∗ nodes - 774∗ nodes 703∗ nodes

5
QuickSort

8
7 0 1 4 4 7 0 1 7 0 1

partition 1min 56s 1s 1min 12s 1min 12s
67 nodes - 50 nodes 50 nodes

6
libgd

15
0 14 1 3 12 3 11 1 14 0 1

gdImageString- TO 1s TO 32m16s
FTEx 83∗ nodes - 58∗ nodes 53 nodes

7
polygon

29
27 0 2 19 10 27 0 2 27 0 2

main 5m33s <1s 1m31s 7s
1092 nodes - 560 nodes 106 nodes

8
rawcaudio

10
0 10 0 8 2 8 2 0 9 1 0

adpcm decoder TO <1s TO 5s+1TO
1502∗ nodes - 1252∗ nodes 569∗ nodes

9
eurocheck

19
18 0 1 14 5 18 0 1 18 0 1

main 25s <1s 18s 6s
129 nodes - 77 nodes 58 nodes

Fig. 8 Experimental results for dynamic analysis alone (DA), static value analysis alone
(V A), Sante without slicing (Sante−slicing) and Sante with slicing (Sante+slicing).
Columns ’�’, ’?’ and ’�’ provide respectively the number of alarms proven safe, the number
of remaining unclassified alarms and the number of detected bugs. “+n TO” indicates that
test generation was stopped by a timeout for n programs. The average length of program
paths explored by dynamic analysis (when applicable) is given below the process duration.

size of these examples is between 33 and 97 lines of C code for Examples 1,
2, 3, 5, and between 154 and 705 lines for Examples 4, 6, 7, 8, 9. All bugs
are out-of-bounds accesses or invalid pointers. Examples 1, 2, 3, 4 and 6 come
from Verisec C analysis benchmark [48]. Example 5 comes from [1]. Exam-
ple 7 is an open-source program6 that computes the area of a convex polygon
from the coordinates of its vertices. Example 8 comes from Mediabench [50].
Example 9 is an open-source program7 containing a single function validating
serial numbers on European bank notes. Experiments were conducted on an
Intel Duo 1.66 GHz notebook with 1GB of RAM. The timeout was set to ten
minutes. For some examples, test generation could be stopped by the timeout
several times on several different slices.

The columns of Fig. 8 show the example number and the results for each
technique. The column threats gives the total number of potential threats be-
fore any analysis. The column ’�’ provides the number of alarms proven safe

6 http://c.happycodings.com/Mathematics/code4.html
7 http://freshmeat.net/projects/eurocheck
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by the method. The columns ’?’ and ’�’ provide respectively the number of
remaining unclassified alarms and the number of detected bugs. The full pro-
cess duration and the number of timeouts (TO) are given below the numbers.
The average length of program paths explored by dynamic analysis (when
applicable) is given below the process duration. This length is expressed in
terms of branching nodes (e.g. if, for, while) traversed through the path. For
a test session interrupted by a timeout before exploring all program paths, we
indicate the average length of paths explored so far and mark it with a ’∗’. In
these experiments, all known bugs are detected with Sante.

The column Sante+slicing gives the results of Sante with the advanced
options (taking into account alarm dependencies) since they give the best
results. The only exception is Example 3 where the indicated time corresponds
to simplifying the program once with respect to all alarms, that was the most
efficient.

In presence of timeouts, for a fair comparison between the methods with
and without slicing, we increase the timeout of the analyses without slicing to
the total time taken by all steps of Sante+slicing (including timeouts), but
it does not change the results. In particular, for Example 6, the timeout for
DA and Sante−slicing was set to 32m16s.

5.1.1 Detailed results for gdImageStringFTEx

In this section, we illustrate each step of the Sante tool on the example
6 of function gdImageStringFTEx. It is part of a module in the GD open
source library for dynamically creating images. This module contains 705 lines
of C code and comes from Verisec C analysis benchmark [48]. The function
gdImageStringFTEx contains 181 lines and takes a string str as input. We
define the precondition for the function as:

str is a zero-terminated string.

Sante starts by applying the value analysis step, which reports 12 alarms.
Technically, the value analyzer marks each alarm by an annotation using the
assert keyword (cf Section 3.1.1).

The second step automatically simplifies the program by program slicing.
Without any simplification by program slicing, dynamic analysis applied to
this program detects a bug and times out before classifying any other alarm.
11 alarms remain unclassified (unknown).

When program slicing is applied once with respect to the set contain-
ing the 12 alarms, it produces one slice pall, in which the sliced function
gdImageStringFTEx contains 151 lines of code instead of 181 initially. Then
dynamic analysis applied to pall detects the bug and times out before classi-
fying any other alarm. 11 alarms remain unclassified.

When program slicing is performed 12 times, once with respect to each
alarm, it produces 12 slices whose size vary from 131 to 140 lines of code.
Then dynamic analysis is called 12 times to analyze the 12 resulting programs.
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Analysis time of each slice varies from 7 minutes 25 seconds to 8 minutes
34 seconds. The complete time needed for the 12 slices is around 1 hour 32
minutes. Dynamic analysis detects the bug and classifies all the remaining
alarms as safe. No alarm remains unclassified.

With advanced options taking into account alarm dependencies, program
slicing is performed 4 times producing 4 slices whose size vary from 132 to
140 lines of code. All 12 alarms are preserved in these 4 slices. Then dynamic
analysis is called 4 times. The complete time needed for the 4 slices is around
32 minutes 16 seconds. Dynamic analysis detects the bug and classifies all the
remaining alarms as safe. No alarm remains unclassified.

5.1.2 Summary of the experimental results

SANTE without slicing vs. DA. Alarm-guided test generation in Sante only
treats the alarms raised by value analysis while DA alone has to exhaustively
consider all potential threats. In Example 9, DA alone analyzes 19 alarms,
and it takes 25 seconds to find a bug and to prove that the error states are
unreachable for the remaining 18 threats, while DA in Sante analyzes only 5
alarms because 14 threats have been already proven safe by value analysis. Our
experiments show that test generation in Sante can detect bugs faster and
leave less unknown alarms (cf Examples 6, 8). Of course, when value analysis
can’t filter any threat (cf Example 4), Sante can take as much time as DA
alone.

SANTE without slicing vs. VA. VA used alone reduces the number of potential
threats and proves that some of them are safe (cf Examples 1, 2, 3, 5, 6, 7, 8
and 9), but it generates a large number of alarms. In our experiments, Sante
leaves less unclassified alarms thanks to the dynamic analysis step. It confirms
some alarms as real bugs and provides a counter-example illustrating each
bug. It classifies some alarms as safe by proving that the error states for these
alarms are unreachable.

SANTE with slicing vs. SANTE without slicing. After simplification by pro-
gram slicing, Sante runs dynamic analysis on a number of simplified pro-
grams. For the presented examples Sante with slicing detects the bugs in
less time (cf Examples 1, 2, 7, 9). It terminates in some cases where Sante

without slicing times out (cf Examples 4, 6, 8), and then it can classifies more
alarms.

Program reduction. The number of paths can be over-exponential in the pro-
gram size. Hence even a slight reduction of the program by the slicing step
before test generation is beneficial and can give better results for larger pro-
grams. The average rate of program reduction in Sante for our examples is
about 32%, and it goes up to 89% for some alarms in some examples. The
average length of program paths explored by the dynamic analysis step de-
creases after the use of slicing with an average of 19%. This rate can reach
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82% (cf Example 7). On the worst case, where the program is not reduced by
program slicing, the average length remains the same (cf Example 5).

Simpler counter-examples. Program slicing removes irrelevant code for the
analyzed alarms. The counter-examples execute significantly shorter paths on
the simplified programs. In our experiments, the execution path length in
counter-examples diminishes on average by 12%, this rate going up to 71%
on some programs. Simpler counter-examples reported for reduced programs
may help the validation engineer more easily understand the reason of the
error and fix it (cf [70]). This simplification could be particularly valuable
for automatically generated code when the engineer does not have a deep
knowledge of the resulting C source code.

The number of unclassified alarms with Sante in our experiments becomes
smaller than for DA (resp. for VA), decreasing on average by 88% (resp. 91%).
For some examples this rate reaches 100% when all alarms are classified.

Speedup. Sante is less time-consuming than DA, and it may allow to avoid
timeouts during test generation. The average speedup rate in our experiments
is around 43%, going up to 98% on some examples.

A more detailed evaluation of various options of Sante is available in [14].

5.2 Tool design

To provide a successful tool combination, each one of the combined tools has
to achieve a high maturity level and benefit from a regular support of its devel-
opers. Developing so different and mature tools as those described in Section 3
is clearly not within the reach of a single person. Indeed, their development
requires quite different theoretical background and programming skills, so a
certain independence in the development of these tools seems necessary and
logic.

On the other hand, combining quite independent tools within a new one
poses well-known technical difficulties of tool integration, for example:

– How to efficiently communicate the results from one tool to another?
– How to avoid duplicated actions (typically, parsing or alias analysis) with

their inherent waste of time?
– How to provide a global view of current and final results?

Our experience shows that an open plugin-oriented architecture for soft-
ware analysis tools like that of the Frama-C platform is an excellent solution
for the dilemma between efficient parallel development of each tool and the
ease of their integration. Frama-C is extensible by nature, thanks to its plu-
gin architecture. Each plugin can exploit the results of analysis made by other
plugins and the services provided by the kernel of Frama-C. These services
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(cf Section 4.1) easily and naturally solve all aforementioned communication,
optimization and result visibility issues. For instance, in Sante (cf Fig. 7) in-
stead of writing and re-reading a C program between value analysis and slicing
steps, or between slicing and test generation steps, the program can be parsed
only once and its AST remains available for all Frama-C plugins. Similarly,
being computed only once, value analysis results may be used by dependency
analysis and program slicing.

Indeed, analysis results of a plugin A are saved in the abstract syntax tree
of the analyzed program. These results can be seen through the graphical user
interface (or in batch mode) and, most importantly, they can be accessed by
another plugin B through the API registered by A in the Frama-C kernel.
Moreover, the opportunity to work on several abstract syntax trees (Frama-C
projects) in parallel allows an optimized implementation of slicing. Program
slices can be constructed directly in the AST form by Slicing and exploited
in this form by PathCrawler.

Furthermore, in a plugin-oriented architecture, one plugin can be modified
or upgraded without having to update other plugins or causing the tool to
stop functioning. As long as the defined interfaces are respected, the plugin
developers can independently work in parallel and no communication between
them is needed.

The architecture and collaborative approach of Frama-C make it possible
to create powerful combined verification tools with relatively little effort. While
the cumulative size of the tools combined by Sante is several hundreds of
thousands of lines of code, the size of the SanteController plugin is only
around 1500 lines in OCaml. It exploits the services provided by the kernel
of Frama-C and the existing analyzers (Value, Slicing, PathCrawler).
Several of the Frama-C services used by Sante (front-end, Value, Pdg,
Slicing) have been intensively tested on randomly generated programs [27],
increasing the chances they behave as intended and work well even on corner
cases.

The development of the SanteController plugin has taken only a few
months and was mainly realized by only one person.

6 Related Work

Recently, several papers presented combinations of static and dynamic anal-
yses for program verification. Daikon [30] uses dynamic analysis to detect
likely invariants. Check’n’Crash [66] applies static analysis that reports alarms
but uses intra-procedural weakest-precondition computation rather than value
analysis, so it necessitates code annotations and can have a high rate of false
alarms. Next, random test generation tries to confirm the bugs. Sante uses
an inter-procedural value analysis that necessitates only a precondition, and
all-path test generation, that may in addition show that some alarms are un-
reachable.
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DSD Crasher [66] applies Daikon [30] to infer likely invariants before the
static analysis step of Check’n’Crash to reduce the rate of false alarms. This
method admits generated invariants that may be wrong and can result in
proving some real bugs as safe, unlike Sante which never reports a bug as
safe.

In the implementation of Check’n’Crash and DSD Crasher, authors use
some open-source tools. They use ESC/Java [16] (developed by Compaq Sys-
tems Research Center) for static analysis, JCrasher [20] (developped by Geor-
gia Institute of Technology) for dynamic analysis and Daikon [30] (developped
by MIT Computer Science and Artificial Intelligence Lab) to detect likely in-
variants. They adapt each tool in order to communicate with the others. Then
enhancements of some components are needed like providing JML annotations
to Daikon components and others described by the authors in [21]. In Sante,
easy tool integration is an important advantage of Frama-C plugin archi-
tecture, where analyses can communicate via well-defined interfaces, and we
don’t need to modify Sante if a component is modified or upgraded unless
the interface is modified.

Synergy [39], BLAST [7] and [60] combine testing and partition refinement
for property checking. Sante is relative to the Yogi tool that implements the
algorithm DASH [5], initially called Synergy. In Sante, we use value analysis
whereas Yogi uses weakest precondition with template-based refinement. The
objective of both tools is to detect error states. They are specified as an input
property in Yogi whereas in Sante they are automatically computed by value
analysis and error-branch introduction. Yogi does not use program slicing. It
iteratively refines an over-approximation using information on unsatisfiable
constraints from test generation. Its approach is more adapted for one error
statement at a time, while Sante can be used on several alarms simultane-
ously. [60] combines predicate abstraction and test generation in a refinement
process, guided by the exactness of the abstraction with respect to operations
of the system rather than by test generation. In the same spirit, [75] uses test
generation to compute an abstraction from concrete states. If the abstraction
contains abstract counter-examples, new concrete states are fabricated along
the abstract counter-examples as a heuristic to increase the coverage of test-
ing. The method is also able to detect when the current program abstraction
provides a proof. DyTa [32] is another implementation of the main ideas of
Sante [12]. However in DyTa some irrelevant code is excluded before dynamic
analysis only for CFG connectivity reasons, that is weaker than program slic-
ing.

Little detail about the implementation of these tools is available. Yogi uses
SLAM and DART for static and dynamic analysis respectively, both developed
by Microsoft. BLAST is developed at UC Berkeley, and [75] is implemented
on the top of the XRT framework [38].

To the best of our knowledge, Sante is the first verificaion tool combin-
ing abstract interpretation based static analysis, dependence-based program
slicing and all-path test generation.
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7 Discussion and future work

Originated from different communities, various static and dynamic analysis
techniques evolved along parallel but separate tracks. Traditionally, they were
viewed as separate domains. However, static and dynamic analysis have com-
plementary strengths and weaknesses, and combining them can provide new
efficient methods for software verification.

In this paper we presented the Sante tool combining several static and
dynamic analysis tools. We emphasized the particular features of these indi-
vidual tools exploited by Sante, as well as tool integration solutions adopted
in the tool and more generally in the Frama-C platform. Frama-C’s plugin
architecture favors both intensive development of several tools in parallel and
their integration for creating combined analysis tools.

In the context of Frama-C in general, and Sante in particular, theValue
plugin has two uses. The first one is to detect potentially unsafe instructions,
and flag them as such. The second one consists in providing comprehensive
aliasing information, which can then be exploited by all other plugins (notably
Pdg and Slicing). Crucially, improving the precision of the value analysis in
general – through better abstract domains, or exploration strategies – can
potentially lead to better results for both functionalities.

In Frama-C, the Pdg plugin is separate from the Slicing one. This was
a conscious design choice, as an independent PDG computation tool is useful
on its own right. For example, another plugin (Scope) uses the results of Pdg
to remove alarms emitted by the value analysis at two different points, when
one is logically equivalent to another. This automatically lowers the number of
alarms that must be verified by Sante. In the future, more aggressive forms of
removal could be envisioned. Typically, we could define a notion of implication
between assertions, and remove those implied by another.

Regarding the Slicing plugin, the possibility to require multiple slicing cri-
teria is very important in the context of Sante, when selecting many alarms
simultaneously. More subtle but equally useful is the removal of useless func-
tion arguments by specialization. It can result in more important code reduc-
tion than is typically possible with standard slicing tools. This in turn means
that PathCrawler needs to explore less code. An even tighter integration
could be envisioned: supplying to PathCrawler which instructions are spare
(cf §3.3.3) would be interesting. Indeed, full coverage of those instructions is
not useful, as by definition they do not participate to the slicing criterion.

The dynamic analysis step of Sante advantageously uses the Path-

Crawler tool whose completeness is essential for Sante. It allows alarms
remaining non-confirmed after a complete all-path exploration of a program
(slice) to be classified as false alarms. On the other hand, for programs having
a too big number of paths even after program slicing, partial k-path cover-
age remains available to confirm alarms. PathCrawler’s efficiency relies on
its fast concolic test generation method, ingeniously combining symbolic and
concrete execution, with incremental path predicate construction and early in-
feasibility detection. Using the constraint logic programming paradigm plays a
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crucial role in PathCrawler’s current implementation. It also benefits from
the Colibri constraint solving library providing a variety of types and con-
straints, primitives for labeling procedures, support for floating point numbers
and efficient constraint resolution. Future work on PathCrawler includes op-
timisation for partial coverage criteria such as all-branches, and the treatment
of the whole of ANSI-C.

In our future work on Sante, we would like to extend the tool to other
classes of threats such as reading an uninitialized variable, arithmetic over-
flow and untreated cases of invalid pointers. We expect that the current tool
architecture will be perfectly appropriate for these extensions. Sante offers
a promising opportunity to run test generation sessions for different slices in-
dependently, and perspectives of parallelization for Sante should be further
explored.

Future work also includes studying further combinations of analysis tech-
niques, such as:

– other configurations of value analysis in order to find a reasonable compro-
mise between the analysis precision and time,

– other usages of program slicing,
– other test generation techniques like using a generational search rather

than the depth-first search, and other types of coverage like the all-branch
test generation.

Another perspective is to combine a proof technique with dynamic analysis
within Frama-C, where we intend to use the Wp or Jessie plugin for proof
of programs.

Finally, the results of Sante could be integrated into the Frama-C plat-
form where they can be exploited by the kernel or any other plugin. Typically,
SanteController would flag assertions that PathCrawler has proven
correct as valid in the original code. More ambitious would be to mark as
dead code the code shown to be unreachable by PathCrawler in the sliced
code – but only if it is also unreachable in the original one. The facilities for
collaboration, communication and result visibility between different analyzers
within the Frama-C platform promise to be very helpful for realization of
these perspectives.
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