
1

TreeFrog for Exhaustive Branch Coverage

Nicky Williams

Université Paris-Saclay, CEA, List,

SAC 2023 30/3/23

2

Exhaustive branch coverage

Bug finding: cover many branches fast
eg. fuzz testing, DSE, model-checking, combinations techno, heuristics,…

Exhaustive branch coverage

◦ Try to cover all reachable branches

◦ Provide an explanation for uncovered branches

◦ either prover/solver demonstrates unreachability

◦ or fails/times out: provide formula/Constraint Satisfaction Problem

Needed for certification, to find dead code, assertion violations,…

In fact, many verification problems require either demonstration of
unreachability or else witness (ie. test case) of numerous objectives

3

Overview of TreeFrog approach

• We start with concolic test generation

• Like concolic, our approach :

• Treats all branches at once, is opportunistic, solver-result-driven

• Is incremental, avoids recalculation, superfluous solver calls and tests

• We supplement concolic with :

• Learn conflicts between branches

• Controlled path suffix enumeration

• Additional tricks

• We treat C functions

4

Example : buggy tritype

1. int testme(int i, int j, int k){

2. int t;

3. if (i == j) t = 1; else t = 0;

4. if (i == k) t = t + 2;

5. if ((j == k) && t > 3) t = t + 3; +52 unreachable

6. if (t == 0){

7. if ((i+j <= k) || (j+k <= i) || (i+k <= j)) t = 4; else t = 1;}

8. else if (t > 3) t = 3; +8 unreachable

9. else if ((t == 1) && (i+j > k)) t = 2;

10. else if ((t == 2) && (i+k > j)) t = 2; else t = 4;

11. return t;

12. }

5

Ex. CFG and Execution Path Tree

3 3

4 4 4

5 5 5

6

6 6

7
7 7

8

8 8

9

10

99

10 10

T F T F

6

Traversal and pruning of Execution Path Tree

Each branch in EP Tree has 1 occurrencefor each path prefix which might
reach it

Not all paths are feasible: our search space is the pruned EP Tree

Test-case input values satisfy the predicate of the path which they cover

Infeasible path ė unsatpath predicate

Unreachablebranch ė all paths to branch are infeasible

Use Symbolic Execution to transform path (sequence branches, assigns,…)
into predicate~ conjunction of constraints on input values

Solutionto constraints = input values for test-case to coverpath

7

Reminder: concolic test generation

Given a covered path in the EP Tree (ie. with satisfiablepredicate)
negate the condition of (flip) one branch in the predicate
and throw away the following conditions
to form the predicate of a new (flipped) path prefix
up to and including flipped branch

If predicate of flipped prefix is unsat: prune EP Tree, ie. remove subtree
If solver timeout: memorise predicate
Else solution is test-case inputs which cover flipped prefix and also
some new suffix

Which new suffix depends on solution chosen by solver

Opportunistic ė partly uncontrolled (driven by solver results)

…

8

Ex. flip branch -4
3

4 4

55

6

7

T F

3. if (i == j) t = 1; else t = 0;

4. if (i == k) t = t + 2;

5. if ((j == k) && t > 3) t = t + 3

6. if (t == 0){

7. if ((i+j <= k) || (j+k <= i) || (i+k <= j)) t = 4; else t = 1;}

path -3 -4 -51 +6 +71

path predicate
-3 i Í j ȿt0 = 0 ȿ

-4 i Í k ȿ

-51 j Í k ȿ

+6 t0Í 0 ȿ

+71i+j Ò k ȿt1 = 4

flipped prefix and predicate
-3 +4

i Í j ȿt0 = 0 ȿi = k

9

9

Ex. new suffix flipped branch
3

4 4

55

7

10

T F
TC2: -3 +4 -51 -6 -8 -91 +101 -102

8

6

10

Reminder: concolic test generation

Given a covered path in the EP Tree (ie. with satisfiablepredicate)
negate constraint of (flip) one branch in the path
to form new (flipped) path prefix up to and including flipped branch

If predicate of flipped prefix is unsat: prune EP Tree, ie. remove subtree
If solver timeout: memorise predicate
Else solution is test-case inputs which cover flipped prefix and also
some new suffix

Which new suffix depends on solution chosen by solver

Opportunistic ė partly uncontrolled (driven by solver results)

Ideal for covering all feasible paths because must flip all branches

But to cover all reachable branches, don’t usually need (or want) to
cover all feasible paths

Only decision to control concolic generation : which branch to flip next ?

11

Concolic test generation for branch coverage

Eagerflip: new (flipped) branch is an occurrence of an uncovered
branch, the solution will cover it (and maybe other uncovered branches)

Hopefulflip: flipped branch is already covered (with a different prefix)
but solution may cover some uncovered branches … or not!

Previous work:
concolic method with eager flips first to minimise solver calls

12

Example of concolic branch coverage

TC1: -3 -4 -51 +6 +71 1: eager +3

TC2: +3 -4 -51 -6 -8 +91 +92 2: eager +4

TC3: +3 +4 +51 -52 -6 -8 -91 -101 3: infeas -51 … +101

2: infeas +51 … -91, eager -92

TC4: +3 -4 -51 -6 -8 +91 -92 -101 4: infeas +101

1: infeas -6, eager -71

TC5: -3 -4 -51 +6 -71 -72 +73 5: eager +72

TC6: -3 -4 -51 +6 -71 +72 5: eager -73

TC7: -3 -4 -51 +6 -71 -72 -73 1: hopeful +51 to cover +52 or +8 or +10 1

TC8: -3 -4 +51 -5_2 +6 -71 +72 8: no extra coverage, infeas +52, -6
1: hopeful +4

TC9: -3 +4 -51 -6 -8 -91 +101 -102 9: infeas +51, +6, +8, eager +102

TC10: -3 +4 -51 -6 -8 -91 +101 +102

13

Learn conflicts between branches

Because of redundancy in EP Tree,
different flipped prefixes may be infeasible for the same “reason” :
ie. have in common a set of mutually inconsistent branches

Inspired by sat-solving, lifted to branches in EP Tree
[Delahaye, Botella, Gotlieb, ICST 2010]
[Gomes do Val, Master Thesis, Univ British Columbia 2014]

Conflict : ordered set of branches which never occurs in a feasible path

Only flip if no known conflict in flipped prefix (if eager)
or else in flipped prefix + uncovered target branch

14

How we learn a conflict from an infeasible path

Project constraints from branches and assigns backwards from path end
-> branch seqences with their path-based weakest precondition (WP)
WP ~ path predicate for the sequence

At each branch, ie. new sequence, check satisfiability of WP
If sat: memorise sequence and WP and continue
If unsat -> Minimum Infeasible Sequence (mis)

…

15

Ex. conflict

9. else if ((t == 1) && (i+j > k)) t = 2;

10.else if ((t == 2) && (i+k > j)) t = 2; else t = 4;

infeas: +3 -4 -51 -6 -8 +91 -92 +101

feas: -92 +101 (iq+jp) ≤krΛtn= 2

mis: +91 -92 +101 tn= 1Λ(iq+jp) ≤ krΛtn= 2

16

How we learn a conflict from an infeasible path

Project constraints from branches and assigns backwards from path end
-> branch seqences with their path-based weakestprecondition(WP)
WP ~ path predicate for the sequence

At each branch, ie. new sequence, check satisfiability of WP
If sat: memorise sequence and WP and continue
If unsat -> Minimum InfeasibleSequence(mis)

Remove successive constraints from WP (and corresponding branches
from mis) and check satisfiability -> ordered branches of UnsatCore

…

17

Ex. conflict

9. else if ((t == 1) && (i+j > k)) t = 2;

10.else if ((t == 2) && (i+k > j)) t = 2; else t = 4;

infeas: +3 -4 -51 -6 -8 +91 -92 +101

feas: -92 +101 (iq+jp) ≤krΛtn= 2

mis: +91 -92 +101 tn= 1Λ(iq+jp) ≤krΛtn= 2

unsat core: +91 +101 tn= 1Λtn= 2

18

How we learn a conflict from an infeasible path

Project constraints from branches and assigns backwards from path end
-> branch seqences with their path-based weakest precondition (WP)
WP ~ path predicate for the sequence

At each branch, ie. new sequence, check satisfiability of WP
If sat: memorise sequence and WP and continue
If unsat -> Minimum Infeasible Sequence (mis)

Remove successive constraints from WP (and corresponding branches
from mis) and check satisfiability -> ordered branches of Unsat Core

Add back (respecting order in mis) branches from mis which
ensure no interference from assignmentsbetween branches in unsat core

-> the resulting ordered set of branches is a conflict

19

Ex. conflict

9. else if ((t == 1) && (i+j > k)) t = 2;

10.else if ((t == 2) && (i+k > j)) t = 2; else t = 4;

infeas: +3 -4 -51 -6 -8 +91 -92 +101

feas: -92 +101 (iq+jp) ≤krΛtn= 2

mis: +91 -92 +101 tn= 1Λ(iq+jp) ≤krΛtn= 2

unsat core: +91 +101 tn= 1Λtn= 2

conflict: +91 -92 +101 +92 assigns t tested in 101

20

Instead of hopeful flipping, reuse feasible sequences

If the flipped branch is already covered but some known feasible sequence
goes from the flipped branch to some uncovered target branch,
and if appending the (internally consistent) feasible sequence to

the (internally consistent) prefix
gives a path with no known conflicts

then try applying the WP of the feasible sequence
instead of the flipped branch condition

ex.
infeas and mis: +3 +4 +51 -52 -6 -8 -91 +101

feasible seq: -91 +101

feasible seq: -8 -91 +101

…
feasible seq: +51 -52 -6 -8 -91 +101

covered path: -3 -4 -51 +6 +71

try: -3 -4 +51 -52 -6 -8 -91 +101

21

8

Instead of hopeful flipping, synthesise new suffixes

If flipped branch (eg.+4) is already covered but could lead
to some uncovered target (eg.+10) then

1. try to construct conflict-free skeleton: minimal
branches to reach target from flipped prefix (-3+4)
while avoiding known conflicts
eg. for CFG diamond (5), only choose branch if
necessary to avoid conflict

2. try to find intermediate branches with no conflicts
eg. choose branch in CFG diamond
-> path with no known conflicts

3. project constraints back down new path suffix to
check satisfiability
-> WP of new feasible path suffix

4. try applying the WP of the new suffix
instead of the flipped branch condition

3

4

5

6

7

9

10

F

T

22

Summary of the TreeFrog method

For each branch in each covered path

- if opposite branch uncovered and no known conflict in flipped prefix
then try to eagerly flip and if flipped prefix infeasible
then extract and memorise a conflict and feasible sequences + wp

- if opposite branch covered and all eager flips tried
and known feasible sequence to some uncovered branch
and no known conflict in flipped prefix + feasible sequence
then try wp of feasible sequence and if resulting path infeasible
then extract and memorise a conflict and feasible sequences + wp

- if opposite branch covered and all eager flips tried
and conflict-free path to an uncovered branch includes flipped prefix
then try wp of new suffix and if suffix or resulting path infeasible
then extract and memorise a conflict and feasible sequences + wp

- if no solver timeout, remaining uncovered branches are unreachable

23

Example of the TreeFrog method

TC1: -3 -4 -51 +6 +71

Same eager flipping to generate TC2-TC7 as for concolic method
…

TC4: +3 -4 -51 -6 -8 +91 -92 -101

…

Then instead of concolic method:
1: hopeful +51

TC8: -3 -4 +51 -52 +6 -71 +72 8: no extra coverage, 1: hopeful +4
TC9: -3 +4 -51 -6 -8 -91 +101 -102 9: eager +102

TC10: -3 +4 -51 -6 -8 -91 +101 +102

TreeFrog does:
1: feasible sequence from +51

infeas: -3 -4 +51 +52 1: feasible sequence from +51

infeas: -3 -4 +51 -52 -6 -8 -91 +101 1: feasible sequence from +4
infeas: -3 +4 +51 -52 -6 -8 -91 +101 1: new suffix from +4
infeas: -3 +4 -51 -6 +8 1: new suffix from +4

TC8 : -3 +4 -51 -6 -8 -91 +101 +102 8: eager -102

TC9: -3 +4 -51 -6 -8 -91 +101 -102

24

Results on other examples

Tcas : 80 branches, 1 non-trivially unreachable

Complex : 270 branches, 2 non-trivially unreachable

strategy cases flipped prefixes

Concolic 395 411

TreeFrog 19 20

strategy cases flipped prefixes execution time
(mins)

Concolic 424839 424838 30

TreeFrog 90 248 3

25

Future work

TreeFrog currently implemented as an experimental option of PathCrawler

Does not treat much of C, notably loops, arrays, pointers, function calls
These necessitate

• controlled generation of suffixes including loops

• more precise backward substitution

… using techniques developed for static analysis?

Then TreeFrog can be evaluated on more examples to find whether

• pruningof the searchspaceeffectivelycounteractspath explosion

• checkingwp satisfiabilitybecomestoo expensive

