
Structural Unit Testing as a Service with PathCrawler-online.com

Nikolai Kosmatov Nicky Williams Bernard Botella Muriel Roger
CEA, LIST, Software Reliability Laboratory, PC 174, 91191 Gif-sur-Yvette, France

E-mail: firstname.lastname@cea.fr

Abstract—PathCrawler is a concolic test generation tool for
the structural unit testing of C code. This paper describes the
PathCrawler-online.com testing service. The user submits C
source files and test parameters, and the server generates test-
cases and coverage information. The service is mostly used
today as a novel alternative to providing a demonstration
version for students and potential users to install. However,
PathCrawler-online can also be seen as a prototype for Testing
as a Service and a first step towards Software Testing in the
Cloud. In this spirit, we discuss the issues raised by our two-
year experience with PathCrawler-online.

I. I NTRODUCTION

Software testing accounts for up to 50% of the total cost of
software development. Automatic testing tools can provide
an efficient alternative to manual testing and reduce the
cost of software testing. In particular, state-of-the-arttools
can now automate the generation of test inputs to ensure
structural coverage of source code.

Traditionally, the software developer buys a licence for
an automatic test tool and installs and runs it on their own
machine. The tool provider must port the tool to the different
platforms likely to be used by software developers. Bugs or
undesirable behavior must be reported by the user to the tool
provider, who must then reproduce them, correct them and
send updates to the user, who must then install them.

The paradigm ofTesting as a Service(TaaS) brings several
benefits, both to the user and to the tool provider (who
becomes a test-service provider). Firstly, TaaS removes the
need for users to install the testing tool. Instead, the test-
service provider installs it on the servers which should vary
less than the users development platforms. Only the user
interface may need to be integrated into different software
development environments, so the porting effort is consid-
erably reduced for the test-service provider. Moreover, the
test-service provider has a centralized record of the history of
test sessions which revealed bugs in the tool, which ensures
that they can easily be reproduced. The test-service provider
can easily update the tool whenever necessary and this is
completely transparent for the user. Finally, the user can test
on demand so does not need to worry about amortizing the
fixed capital costs of the software licence and extra hardware
to run the tests.

This paper presents PathCrawler-online.com, the first
online service for automatic structural unit testing of C
programs, and discusses various issues encountered in our
two-year experience of operation. Section II briefly presents

Figure 1. Stage 1 of the PathCrawler method

the PathCrawler tool. Section III describes the PathCrawler-
online testing service. Section IV reports on our experience
feedback. Sections V and VI provide related work and
conclusions.

II. T HE PATHCRAWLER TOOL

PathCrawler [1], [2], [3] is an automatic generator of test-
case inputs to ensure structural coverage of C source code.

Structural unit testing is widely used in industrial ver-
ification processes of critical software. In critical systems
processes where structural testing is required by the devel-
opment norm, manually creating tests from the specification
often fails to achieve complete satisfaction of the coverage
criterion. In this case, automatic methods help to reach the
objectives which are not covered and provide corresponding
path conditions that may be used to refine the specification
if needed. They may also determine whether the objectives
which are not yet covered are really feasible.

However, even when the development process does not
impose any structural testing activity, the use of an automatic
structural test generation tool is a way to increase the quality
of the software with a very low cost overhead. Indeed
structural unit testing can accompany code development in
order to detect bugs as early as possible. These may be
functional errors revealed by an oracle which defines the
specific properties of the tested software. But PathCrawler’s
exhaustive exploration of the source code can also be used
to demonstrate the absence of certain runtime errors or
anomalies that may indicate a potential bug (or cause future
maintenance problems) in any program. The online tutorial1

gives examples of how PathCrawler can be used with an
oracle provided by the user, to search for runtime errors or

1http://pathcrawler-online.com/tutorial/tutorial2012.pdf



Figure 2. Stage 2 of the PathCrawler method

anomalies or even tocross-checkthe implementation against
another implementation or specification in C.

PathCrawler is based on a method [2] often referred to in
the literature asconcolicor dynamic symbolic execution. It
is based on the instrumentation and execution of the code
under test and on constraint solving. Test generation is a
cyclical process alternating execution of the previous test-
case and the search for the following case. This has the
incidental advantage that an oracle can be inserted into the
loop to provide the results of the cases as they are generated.

This method contains two main stages. The first stage is
illustrated by Figure 1. The user submits the complete ANSI
C code of the function to be tested and all called functions
in files designated in Figure 1 byf.c. The Analyzer
module automatically instruments the program and extracts
the semantics of each statement in the form of symbolic
constraints. The instrumented version, denoted byfi.c,
contains the original source code off.c enriched with path
tracing instructions. The compilation of this instrumented
version provides an executable test harness called Launcher.
The role of Launcher is to run the program under test with
a given input and record the trace of the program path that
was activated. After instrumentation, the user may modify
the default test context. In particular, the user may provide
an optional oracle program, denotedo.c in Figure 1, that
checks if the result of the program executed by a given test
case is correct or not. When provided, the oracle is loaded
into Launcher, and called after the execution of a test case
to produce a verdict on the results.

Figure 2 illustrates the second stage, which uses the
Launcher and the intermediate program representation in
constraints obtained at the first stage. At this stage, the three
modules shown in Figure 2 are used one after another in
a loop. At the beginning of each iteration, Path Explorer
determines the next (partial) program path to be covered
(for the first iteration, this is the empty path). Path Explorer
sends to Solver the path constraints corresponding to the path
to be covered. Solver is a finite-domain constraint solver.
It generates test inputs which satisfy the constraints (and
so activate the partial path) and sends them to Launcher.
Launcher executes the program under test on these inputs
and sends the trace of the executed program path to Path

Figure 3. Summary of a test session with PathCrawler

Explorer, which starts the next iteration. Solver will failto
generate a test case if it can show that the program path to
be covered is infeasible (i.e. the constraints are unsatisfiable)
or if the constraint problem is so difficult that Solver does
not find a solution in a given time, provoking a timeout.
Indeed, constraint resolution (satisfiability) is NP-complete
and it is difficult to predict the time needed to solve the
path constraints. When Solver fails to generate a test case,
the method skips the concrete execution step with Launcher
and goes directly to Path Explorer for the next path choice.
When Path Explorer has no more paths to cover, all paths
are covered and test generation stops.

III. PATHCRAWLER-ONLINE TESTING SERVICE

In this section, we describe the inputs and generated
results of the PathCrawler-online testing service.

A. Inputs
PathCrawler-online takes the following input data:

• an archive with complete, possibly multi-file, compil-
able C source code,

• name of the main file and the function under test,
• test parameters including a precondition and test gener-

ation strategy (coverage of all feasible paths ork-path:
just those with a limited number of loop iterations),

• C source code of an oracle.

An online interface allows the user to customize test
parameters and the oracle. Alternatively, the user can submit
customized C oracle and test parameters in XML format
within the submitted archive.

B. Outputs
During a test generation session, PathCrawler-online gen-

erates test-cases and coverage information for the submitted
C code and parameters. Test session results include:



Figure 4. A test-case automatically generated by PathCrawler

• test session statistics and coverage information (cf
Figure 3),

• test-cases (cf Figure 4),
• test drivers,
• explored path details.

The results are generated in XML and HTML formats that
can be easily integrated into a user testing environment
or visualized in a browser, while test drivers are ready-to-
compile C files. The XML outputs are not available in the
free evaluation version.

Test session statistics and path coverage information (cf
Figure 3) include test session duration, the number of
explored paths with the number of paths of each status
(e.g. covered, infeasible, violating a user assume statement,
interrupted by a timeout), the number of generated test-
cases with the number of different oracle verdicts (e.g.
success, failure, violating a user assertion, unknown). Branch
coverage of generated test-cases is also computed (and will
be part of the test session summary in the upcoming release).

A test-case (cf Figure 4) includesinput values(for in-
put array/pointer sizes and variable values),output values
and theoracle verdict. Moreover, it provides the complete
program path executed by the test-case, as well aspath
prefix, path predicateandsymbolic outputs. Explored paths
information provides the list of all program paths explored
by PathCrawler, including infeasible ones, and their path
predicates.

IV. OUR EXPERIENCE OFPATHCRAWLER-ONLINE

A. PathCrawler-online as an evaluation and teaching aid

The primary motivation for developing PathCrawler-
online was to provide a way for researchers, students and
potential users from industry to try out and evaluate the tool
and get a first experience of automatic structural unit testing.
Indeed, we have successfully used it for classes on structural
testing [4] and tutorials at several international events,such
as TAP 2012 [5], TAROT 2012, QSIC 2012 [6] and ASE
2012. It is also used in courses taught in other countries.

However, PathCrawler-online can also be seen as a proto-
type for TaaS and a first step towards Software Testing in the
Cloud. To develop this aspect, we start by discussing several
issues raised by our experience in running PathCrawler-
online.

B. Confidentiality of test artifacts

An online testing service requires the user to upload their
implementation and an oracle. In the case of PathCrawler,
the user uploads the source code, which is then compiled by
the server. In the case of automatic test-case generation from
models, we can suppose that the user would have to upload
a model and an executable version of the implementation.
In all cases, a major problem of confidentiality is apparent.
Indeed, since PathCrawler-online came into service, we have
had numerous comments from industrial partners that they
could not possibly envisage uploading their source code
onto our server. Many feel the same way about the detailed
models often used in model-based testing. Along with the
oracles, these artifacts represent an important part of the
worth of the company. The confidentiality issue was also
identified in other studies [7], [8], [9].

However, as we pointed out in the Introduction, one of the
advantages of TaaS as exemplified by PathCrawler-online is
that in the case of a bug, all the information necessary to
reproduce it is present on the server. In many cases, the
user does not have to intervene at all, abnormal behavior
is automatically detected and the session data is saved for
future analysis.

We see from the experience of PathCrawler-online that
TaaS cannot succeed unless the protection of the test artifacts
is sufficient to reassure potential users but that, if possible,
this protection should allow the use of these artifacts by the
service provider for debugging purposes only.



It would be quite possible to provide increased reassur-
ance for clients by improving confidentiality in PathCrawler-
online in the following ways:

• Cryptography: use of protected channels (such as https)
to transfer the user’s artifacts to the server.

• Anonymity: destruction of the identity of the client of
each session in the records we save for debugging.

• Obfuscation: automatic irreversible renaming of vari-
ables, functions etc. (but without changing the control
structure) in the user’s source code in the records we
save for debugging.

A legally binding undertaking not to disclose users’
artifacts could also help.

C. Execution of the implementation
Among online services, test services such as PathCrawler-

online present a particular danger: the potential corruption of
the server due to the execution of unknown code submitted
by the user (cf Section II). This may be an involuntary
result of bugs in the user’s implementation, or due to a
malicious attempt to access data on the server or bring it
down. PathCrawler-online is essentially protected in the four
following ways from this danger (see also [10]).

• PathCrawler-online runs Stage 2 (Figure 2) in a virtual
machine in order to ensure that it is isolated from other
data and so that a program crash cannot impact the
server. The virtual machine protects from unauthorized
access to the files outside, but a limited information
exchange with external files has to be allowed in some
way in order to transfer into the virtual machine the
files related to the desired test generation task and to
extract the results. The privileges of the users executing
the virtual machine and the program under test inside
are carefully checked and restricted.

• Moreover, by restricting the resources used by an indi-
vidual test session, PathCrawler-online prevents attacks
based on saturation of the memory or fork bombs (with-
out needing to completely forbid the fork operation).

• PathCrawler-online takes advantage of the necessary
analysis of the source code to reject programs contain-
ing potentially dangerous instructions, such as assembly
code.

• Finally, PathCrawler-online deactivates network access
in the virtual machine. In our opinion, the number and
variety of attacks using the Internet today would make it
very difficult to provide a reliable public testing service
similar to PathCrawler-online for software using the
Internet.

The issues described above are related to those encoun-
tered in commercial PaaS clouds where the user code is
executed in the cloud. For example, Google App Engine
[11] also uses virtualization to secure execution, but its
limitations are different from PathCrawler-online. Execution
of C code is forbidden in Google App Engine, while

PathCrawler is designed for testing C code. In Google
App Engine, applications cannot write to the file system
in any of the runtime environments, while PathCrawler-
online allows read-write access to files inside the virtual
machine because it is necessary e.g. to write test generation
results. Google App Engine forbids creating sub-processes
while PathCrawler-online allows a limited number of sub-
processes to be created by the program under test. Google
App Engine also restricts access to and from the Internet,
whereas PathCrawler-online completely forbids it.

D. Target Platform

In order to provide a complete testing service, it is
necessary to take into account the target platform (hard-
ware, operating system, compiler,...) of the implementation.
Indeed, the behavior of the tested program may vary slightly
from platform to platform due to differences such as word
length or endianness. If the program has been developed
on a different platform to the target platform then these
subtle differences can be a source of bugs which will not be
detected unless testing is performed on the target platform.

PathCrawler-online does not currently propose testing on
different target platforms. It is up to the user to recover
the test inputs or drivers and re-run the tests on the target
platform. However, testing on different target platforms
could be proposed without changing the fundamental design
of PathCrawler-online. The PathCrawler method described
in Section II would have to be extended in three places.

Firstly, the semantics of the C instructions used in the
Analyzer would have to take account of platform-specific
features such as word length. It is already possible to
configure the Analyzer to do this for several platforms.

Secondly, it would be necessary to select the appropriate
compiler when compiling the Launcher.

Thirdly, the Launcher would need to be run on the target
platform or a simulator. The architecture of PathCrawler-
online allows the Path Explorer and Solver modules to be run
on a different platform to the Launcher because the Launcher
is a separate process.

E. Pricing

PathCrawler-online currently provides a restricted service
for free. It may be desirable to maintain a level of use which
is free, in order to tempt user into trying the service. In
order to overcome the restrictions of the free service and
take advantage of the cloud, the user would have to pay.
This raises the question of the pricing strategy.

Because of the nature of structural test-case generation,
the user who just pays for the CPU time consumed by the
test session has no way of knowing in advance the cost of
the test session. This is because the CPU time depends on
the number of test-cases necessary to achieve the desired
coverage, but also on the number of infeasible paths and the
difficulty of the corresponding constraint problems.



Users may prefer to pay a fixed price per test. From their
point of view, the more they pay, the more their implemen-
tation is tested. However, the supplier of the service must
then estimate the risk that certain implementations contain
a great many infeasible paths (which don’t result in a test-
case) or contain paths that pose a constraint problem which
takes a long time to resolve.

The pricing of a similar test service is discussed in [12].
They propose a cost per marginal increase in coverage which
would be higher as the coverage increases, reflecting the fact
that the last percentage points of coverage often require more
CPU time than the first. They also propose the alternative of
a price per bug found but this has the disadvantage of being
completely unpredictable for the test-service provider.

F. Performance

In order to avoid denial-of-service problems, PathCrawler-
online restricts the resources which can be used during
any one test session. These resources include disk space,
memory and execution time. If PathCrawler-online were
to be extended to Testing in the Cloud, then almost all
restrictions could be lifted.

PathCrawler-online proposes a unit-test service so avoids
the performance problems posed by testing large systems.
However, structural coverage, and particularly path cover-
age, requires many test cases and their automatic generation
can demand a lot of resources. Much research has been
carried out in the optimization of automatic structural test-
case generation. Sometimes path coverage is not possible
and branch or condition coverage is preferred. However,
a complementary angle of attack is to make use of the
increased computing resources available in the cloud.

PathCrawler-online currently takes advantage of the multi-
core architecture of the server to run several test sessionsin
parallel but each test-session is run sequentially. Deployment
on the cloud offers the possibility of parallelization of
each test session, to speed up testing, and the test-case
generation technique used by PathCrawler seems particularly
well adapted to parallelization.

Parallelization could be implemented at at least three
levels:

• Concolic test generation is based on an alternation
between execution of generated cases (Launcher) and
the search for new cases (Path Explorer and Solver).
The two processes currently run synchronously, one
after the other, but they could be run in parallel.

• Concolic test generation performs an exploration of
the tree of execution paths and this exploration could
also be parallelized. This is the focus of the Cloud9
project, which is based on a generation method similar
to PathCrawler’s. Methods for load balancing, tree ex-
ploration strategies to speed up coverage and techniques
to reduce redundant computation are described in [13].

• PathCrawler uses constraint solving over finite do-
mains, which also offers interesting perspectives for
parallelization.

Another potential benefit of TaaS described in [13] could
also be transposed to PathCrawler. When many users make
calls to the same libraries, the test results for these calls
can be stored. In the case of PathCrawler, the previously
discovered path predicates of the library functions could
be used to avoidpath explosion. This occurs when all
combinations of paths through the tested function with those
through called functions must be explored. It could be
avoided by using the stored path predicates to predict when
further exploration of the called function cannot increase
coverage of the tested function.

V. RELATED WORK

Most current commercial use of software testing in the
cloud [14] consists of providing test execution platforms for
web, desktop or mobile applications, with some providers
also allowing access to testing tools.

A non-commercial example of work with a similar goal
(but not publicly available as an online service to our knowl-
edge) is D-Cloud [15], [16]. This is a large-scale software
testing environment which has been developed to ensure
dependable distributed systems. D-Cloud can use computing
resources provided by the cloud to execute several test-
cases simultaneously, and thus accelerate the software testing
process.

PathCrawler-online proposes a completely different ser-
vice: automatic structural unit testing of C code based on
the automatic generation of test-case inputs.

PathCrawler-online is similar to the service envisaged
in the Cloud9 [13] project: a cloud-based testing service
based on the KLEE testing tool. Cloud9 implements parallel
symbolic execution for computer clusters operating on pub-
lic cloud infrastructures such as Amazon EC2 and clusters
running cloud software like Eucalyptus. The underlying test-
generation technique is similar to that used by PathCrawler
but Cloud9 is not focussed on unit testing and treats binary
code rather than C source code. The Cloud9 software is
publicly available but there does not seem to be a publicly
available service based on the software.

The York Extensible Testing Infrastructure (YETI) [17] is
an automated random testing tool for Java with the ability to
test programs written in different programming languages.A
cloud implementation of YETI was shown to significantly
improve the performances and to solve potential security
issues (by executing Java classes on clean virtual machines).
However, there does not seem to be a publicly available TaaS
based on YETI.

VI. CONCLUSION

We explained in the Introduction why automatic testing
tools are good candidates for TaaS. We also explained in
Section II how PathCrawler automates structural unit testing.



Year Total test sessions Examples User code
2011 1237 52% 48%
2012 6869 32% 68%

Figure 5. Total number of test sessions and the rate of test sessions for
predefined examples and for user submitted code

Unit testing is one of the three types of testing identified in
[9] as suitable for the cloud. They argue that the benefits of
testing in the cloud also depend on three characteristics of
the application under test: test cases must be independent
from one another, the operational environment of the test
process must be well known and the application must have
a programmatic interface so that testing can be automated. In
the case of unit testing as performed by PathCrawler, these
characteristics are indeed present. Unit testing requiresthe
user to encapsulate each software unit, including all called
functions, so that it can be run independently. To ensure the
detection of functional defects, the user must also provide
an oracle. Indeed, the user effort is shifted from inventing
test-cases to formalizing the calling context and oracle of
each tested unit.

The PathCrawler-online test service can be used to con-
tinually accompany the developer during code development.
This is the programmer’s sidekick rôle for TaaS described
in [12]. Path coverage requires many tests, which may
take a long time to construct. However, path coverage can
ensure detection of bugs which might be missed by other
criteria and it is the only test criterion which can be used to
guarantee the absence of certain runtime errors or anomalies
or do cross-checking. This is why we think that path testing
is a good candidate for deployment on the cloud in order to
gain access to increased resources. We explain in Section IV
why the test-generation method used by PathCrawler should
lend itself well to distribution on different machines.

To our knowledge, PathCrawler-online was the first test-
case server of its kind freely available online. It has been in
operation for two years now and we have observed a trend
in its use that is illustrated by the statistics in Figure 5.
Firstly, the number of users is increasing, and the number
of test sessions has reached 700 per month. Secondly, early
use was often restricted to running the predefined examples
proposed by the server but recently this has changed. There
has been a significant increase in the number of uploads of
the user’s own code, including some quite large programs.

In other words, we have the impression that the use of
PathCrawler-online is evolving from an evaluation version
and a teaching aid towards a test service. This use is clearly
restricted today by concerns about the confidentiality of the
source code, and by the limits on resources that we are
obliged to impose as long as all sessions are run on one
server. This is why we are studying how our experience of
providing a limited testing service for free could help in the
design of a commercial cloud-based deployment.

REFERENCES

[1] N. Williams, B. Marre, and P. Mouy, “On-the-fly generation
of k-paths tests for C functions : towards the automation of
grey-box testing,” inASE 2004, pp. 290–293.

[2] N. Williams, B. Marre, P. Mouy, and M. Roger, “PathCrawler:
automatic generation of path tests by combining static and
dynamic analysis,” inEDCC 2005, pp. 281–292.

[3] B. Botella, M. Delahaye, S. Hong-Tuan-Ha, N. Kosmatov,
P. Mouy, M. Roger, and N. Williams, “Automating structural
testing of C programs: Experience with PathCrawler,” inAST
2009, pp. 70–78.

[4] N. Kosmatov, N. Williams, B. Botella, M. Roger, and
O. Chebaro, “A lesson on structural testing with pathcrawler-
online.com,” inTAP 2012, pp. 169–175.

[5] N. Kosmatov and N. Williams, “Tutorial on automated struc-
tural testing with PathCrawler. Extended abstract,” inTAP
2012, p. 176.

[6] N. Williams and N. Kosmatov, “Structural testing with
PathCrawler. Tutorial synopsis.” inQSIC 2012, pp. 289–292.

[7] L. M. Riungu, O. Taipale, and K. Smolander, “Software
testing as an online service: Observations from practice,” in
STITC 2010, pp. 418–423.

[8] ——, “Research issues for software testing in the cloud,” in
CloudCom 2010, pp. 557–564.

[9] T. Parveen and S. R. Tilley, “When to migrate software testing
to the cloud?” inSTITC 2010, pp. 424–427.

[10] N. Kosmatov,Software Testing in the Cloud: Perspectives on
an Emerging Discipline. IGI Global, 2012, ch. XI: Concolic
Test Generation and the Cloud: Deployment and Verification
Perspectives, pp. 231–251.

[11] Google, “Google App Engine Documentation,” 2012,
https://developers.google.com/appengine/.

[12] G. Candea, S. Bucur, and C. Zamfir, “Automated software
testing as a service,” inSoCC 2010), pp. 155–160.

[13] L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and G. Can-
dea, “Cloud9: a software testing service,”Operating Systems
Review, vol. 43, no. 4, pp. 5–10, 2009.

[14] L. Riungu-Kalliosaari, O. Taipale, and K. Smolander, “Testing
in the Coud: Exploring the Practice,”IEEE Software, vol. 29,
no. 2, pp. 46–51, 2012.

[15] T. Banzai, H. Koizumi, R. Kanbayashi, T. Imada, T. Hanawa,
and M. Sato, “D-Cloud: Design of a software testing environ-
ment for reliable distributed systems using cloud computing
technology,” inCCGrid 2010, pp. 631–636.

[16] T. Hanawa, T. Banzai, H. Koizumi, R. Kanbayashi, T. Imada,
and M. Sato, “Large-scale software testing environment using
cloud computing technology for dependable parallel and
distributed systems,” inSTITC 2010, pp. 428–433.

[17] M. Oriol and F. Ullah, “Yeti on the cloud,” inSTITC 2010,
pp. 434–437.


