Structural Unit Testing as a Service with PathCrawler-online.com

Nikolai Kosmatov Nicky Williams Bernard Botella Muriel Reg
CEA, LIST, Software Reliability Laboratory, PC 174, 9119if-<gir-Yvette, France
E-mail; firstname.lastname@cea.fr

Abstract—PathCrawler is a concolic test generation tool for C program program constraints
the structural unit testing of C code. This paper describes the Ly
PathCrawler-online.com testing service. The user submits C f.c Analyzer .

source files and test parameters, and the server generates tes

cases and coverage information. The service is mostly used)

today as a novel alternative to providing a demonstration fi.c instrumented
version for students and potential users to install. However, program
PathCrawler-online can also be seen as a prototype for Testing

as a Service and a first step towards Software Testing in the

Cloud. In this spirit, we discuss the issues raised by our two- 0.C compiler = Launcher

year experience with PathCrawler-online. oracle test harness

I. INTRODUCTION Figure 1. Stage 1 of the PathCrawler method
Software testing accounts for up to 50% of the total cost of

. . . . the PathCrawler tool. Section Il describes the PathCnawle
software development. Automatic testing tools can provide

- . . online testing service. Section IV reports on our expergenc
an efficient alternative to manual testing and reduce th 9 P P

cost of software testing. In particular, state-of-thetarls eedback. Sections V and VI provide related work and

. . conclusions.
can now automate the generation of test inputs to ensuré

structural coverage of source code. Il. THE PATHCRAWLER TOOL

Traditionally, the software developer buys a licence for pathCrawler [1], [2], [3] is an automatic generator of test-
an automatic test tool and installs and runs it on their owrcase inputs to ensure structural coverage of C source code.
machine. The tool provider must port the tool to the différen Structural unit testing is widely used in industrial ver-
platforms likely to be used by software developers. Bugs Offication processes of critical software. In critical syste
undesirable behavior must be reported by the user to the to@rocesses where structural testing is required by the devel
provider, who must then reproduce them, correct them andpment norm, manually creating tests from the specification
send updates to the user, who must then install them. often fails to achieve complete satisfaction of the coverag

The paradigm oTesting as a Servig@aaS) brings several criterion. In this case, automatic methods help to reach the
benefits, both to the user and to the tool provider (Whopbjectives which are not covered and provide corresponding
becomes a test-service provider). Firstly, TaaS removes thpath conditions that may be used to refine the specification
need for users to install the testing tool. Instead, the testf needed. They may also determine whether the objectives
service provider installs it on the servers which should/var which are not yet covered are really feasible.
less than the users development pla’[forms. Only the user However, even when the deve|opment process does not
interface may need to be integrated into different softwargmpose any structural testing activity, the use of an autama
development environments, so the porting effort is considstryctural test generation tool is a way to increase theityual
erably reduced for the test-service prOVider. Moreoves, th of the software with a very low cost overhead. Indeed
test-service provider has a centralized record of thetyistb structural unit testing can accompany code development in
test sessions which revealed bUgS in the tOOl, which ensuresyder to detect bugs as ear|y as possib|e_ These may be
that they can easily be reproduced. The test-service movid functional errors revealed by an oracle which defines the
can easily update the tool whenever necessary and this &pecific properties of the tested software. But PathCraavler
completely transparent for the user. Finally, the user eah t exhaustive exploration of the source code can also be used
on demand so does not need to worry about amortizing thgy demonstrate the absence of certain runtime errors or
fixed Capital costs of the software licence and extra hardwaranoma"es that may indicate a potentia| bug (or cause future
to run the tests. maintenance problems) in any program. The online tuforial

This paper presents PathCrawler-online.com, the firshives examples of how PathCrawler can be used with an

online service for automatic structural unit testing of C gracle provided by the user, to search for runtime errors or
programs, and discusses various issues encountered in our

two-year experience of operation. Section Il briefly présen Ihttp:/pathcrawler-online.com/tutorial/tutori@012.pdf

program constraints context constraints Test session summary

+4:X>Y 0<X<10,
-4:XsY 0<Y<10
6 [Joszs10

- Path explorer -
T o Function under test: Bsearch

executed Es ;SY next path Coverage criterion: @ all feasible paths
7'6 X<z .
path S| _/ constraints Termination status: @ normally
£r {:2 7\
Launcher <« .5/ < Solver
test inputs Total test session duration: 1 sec.

Number of generated test-cases: 17
Figure 2. Stage 2 of the PathCrawler method with verdict "success": @ 10
. . .) with verdict "failure": @ 7
anomalies or even toross-checkhe implementation against with verdict "unknown": @ 0
another implementation or specification in C. violating user assertion: @ 0
PathCrawler is based on a method [2] often referred to in Number of treated partial paths: ©| 70
the literature asoncolic or dynamic symbolic executioft covered: @@ 17
is based on the instrumentation and execution of the code infeasible: 0 __ >3
interrupted by timeout: @ 0

under test and on constraint solving. Test generation is a
cyclical process alternating execution of the previous-tes
case and the search for the following case. This has the
incidental advantage that an oracle can be inserted into thExplorer, which starts the next iteration. Solver will f&al
loop to provide the results of the cases as they are generategenerate a test case if it can show that the program path to
This method contains two main stages. The first stage ibe covered is infeasible (i.e. the constraints are unsatisfi
illustrated by Figure 1. The user submits the complete ANSpr if the constraint problem is so difficult that Solver does
C code of the function to be tested and all called functionghot find a solution in a given time, provoking a timeout.
in files designated in Figure 1 by.c. The Analyzer Indeed, constraint resolution (satisfiability) is NP-cdete
module automatically instruments the program and extractgnd it is difficult to predict the time needed to solve the
the semantics of each statement in the form of symboligath constraints. When Solver fails to generate a test case,
constraints. The instrumented version, denotedf by c, the method skips the concrete execution step with Launcher
contains the original source codefofc enriched with path and goes directly to Path Explorer for the next path choice.
tracing instructions. The compilation of this instrumehte When Path Explorer has no more paths to cover, all paths
version provides an executable test harness called Launch@re covered and test generation stops.
The role of Launcher is to run the program under test with 1. PATHCRAWLER-ONLINE TESTING SERVICE
a given input and record the trace of the program path that In thi . d ibe the input d ted
was activated. After instrumentation, the user may modify n tis section, we describe the npuls and generate
the default test context. In particular, the user may previd results of the PathCrawler-online testing service.
an optional oracle program, denotedc in Figure 1, that A. Inputs
checks if the result of the program executed by a given test pathCrawler-online takes the following input data:
case is correct or not. When provided, the_ oracle is loaded | 5 archive with complete, possibly multi-file, compil-
into Launcher, and called after the execution of a test case gpje ¢ source code,

to produce a verdict on the results. _ « name of the main file and the function under test,
Figure 2 illustrates the second stage, which uses the , test parameters including a precondition and test gener-

Launcher and the intermediate program representation in ation strategy (coverage of all feasible paths:quath
constraints obtained at the first stage. At this stage, tieeth just those with a limited number of loop iterations),

modules shown in Figure 2 are used one after another in , ¢ source code of an oracle.
a loop. At the beginning of each iteration, Path Explorer
determines the next (partial) program path to be covere

Figure 3. Summary of a test session with PathCrawler

An online interface allows the user to customize test

N . . %arameters and the oracle. Alternatively, the user can gubm
(for the first iteration, this is the empty path). Path Explor customized C oracle and test parameters in XML format
sends to Solver the path constraints corresponding to the P& ithin the submitted archive

to be covered. Solver is a finite-domain constraint solver.

It generates test inputs which satisfy the constraints (an&. Outputs

so activate the partial path) and sends them to Launcher. During a test generation session, PathCrawler-online gen-
Launcher executes the program under test on these inpuésates test-cases and coverage information for the sugamitt
and sends the trace of the executed program path to Pa@ code and parameters. Test session results include:

Test-case TC_2 A test-case (cf Figure 4) includdasput values(for in-
put array/pointer sizes and variable valuem)tput values
and theoracle verdict Moreover, it provides the complete
program path executed by the test-case, as well @th
prefix path predicateand symbolic outputsExplored paths
information provides the list of all program paths explored

Previous TC Next TC

Input array sizes:

Array (or pointer)|Number of elements by PathCrawler, including infeasible ones, and their path
table 2 predicates.
Input values:
IV. OUR EXPERIENCE OFPATHCRAWLER-ONLINE
Variable|Value
| 2 A. PathCrawler-online as an evaluation and teaching aid
e o The primary motivation for developing PathCrawler-
ablef1] |83 online was to provide a way for researchers, students and
Verdict: @ success potential users from industry to try out and evaluate thé too
Path: @ bsort.c - +6: +6b: bsori.c - +8: +9: -B: +6: -6b: and get a first experience of automatic structural unitrigsti
Indeed, we have successfully used it for classes on stalctur
Outputs: @
testing [4] and tutorials at several international evestgh
Expression|Value as TAP 2012 [5], TAROT 2012, QSIC 2012 [6] and ASE
table[0] |83 2012. It is also used in courses taught in other countries.
b= i However, PathCrawler-online can also be seen as a proto-
Symbolic outputs: @ type for TaaS and a first step towards Software Testing in the
, Cloud. To develop this aspect, we start by discussing skvera
Expression Value i ised by our experience in running PathCrawler-
table[0] table[1] ISSL_jeS raise y P 9
table[l] _|table[0] online.
Path predicate: @ B. Confidentiality of test artifacts
0<(l+-1) AND An online testing service requires the user to upload their
table[0]<table[1] AND implementation and an oracle. In the case of PathCrawler,

the user uploads the source code, which is then compiled by

1>=(1+-1 . .
e the server. In the case of automatic test-case generation fr
R models, we can suppose that the user would have to upload
Path prefix ID: @ P 2 a model and an executable version of the implementation.

In all cases, a major problem of confidentiality is apparent.
Indeed, since PathCrawler-online came into service, we hav
« test session statistics and coverage information (chad numerous comments from industrial partners that they

Figure 4. A test-case automatically generated by PathCrawle

Figure 3), could not possibly envisage uploading their source code
« test-cases (cf Figure 4), onto our server. Many feel the same way about the detailed
o test drivers, models often used in model-based testing. Along with the
« explored path details. oracles, these artifacts represent an important part of the

The results are generated in XML and HTML formats thatworth of the company. The confidentiality issue was also
can be easily integrated into a user testing environmenigentified in other studies [7], [8], [9].
or visualized in a browser, while test drivers are ready-to- However, as we pointed out in the Introduction, one of the
compile C files. The XML outputs are not available in the advantages of TaaS as exemplified by PathCrawler-online is
free evaluation version. that in the case of a bug, all the information necessary to
Test session statistics and path coverage information (ofeproduce it is present on the server. In many cases, the
Figure 3) include test session duration, the number ofiser does not have to intervene at all, abnormal behavior
explored paths with the number of paths of each statuss automatically detected and the session data is saved for
(e.g. covered, infeasible, violating a user assume stateme future analysis.
interrupted by a timeout), the number of generated test- We see from the experience of PathCrawler-online that
cases with the number of different oracle verdicts (e.g.TaaS cannot succeed unless the protection of the testtstifa
success, failure, violating a user assertion, unknowrgnén is sufficient to reassure potential users but that, if pdssib
coverage of generated test-cases is also computed (and willis protection should allow the use of these artifacts ley th
be part of the test session summary in the upcoming releasejervice provider for debugging purposes only.

It would be quite possible to provide increased reassurPathCrawler is designed for testing C code. In Google
ance for clients by improving confidentiality in PathCrawle App Engine, applications cannot write to the file system

online in the following ways: in any of the runtime environments, while PathCrawler-
° Cryptography: use of protected channels (SUCh as httpg)n”ne allows read-write access to files inside the virtual
to transfer the user’s artifacts to the server. machine because it is necessary e.g. to write test generatio

« Anonymity: destruction of the identity of the client of results. Google App Engine forbids creating sub-processes
each session in the records we save for debugging. While PathCrawler-online allows a limited number of sub-

« Obfuscation: automatic irreversible renaming of vari- processes to be created by the program under test. Google
ables, functions etc. (but without changing the controlAPP Engine also restricts access to and from the Internet,
structure) in the user's source code in the records wavhereas PathCrawler-online completely forbids it.
save for debugging.

A legally binding undertaking not to disclose users’

artifacts could also help.

D. Target Platform

In order to provide a complete testing service, it is
])) necessary to take into account the target platform (hard-
C. Execution of the implementation ware, operating system, compiler,...) of the implemeatati
Among online services, test services such as PathCrawle[pndeed, the behavior of the tested program may vary slightly
online present a particular danger: the potential coromdf from platform to platform due to differences such as word
the server due to the execution of unknown code submittefbngth or endianness. If the program has been developed
by the user (cf Section Il). This may be an involuntary on a different platform to the target platform then these
result of bugs in the user's implementation, or due to asyptle differences can be a source of bugs which will not be
malicious attempt to access data on the server or bring @etected unless testing is performed on the target platform
down.. PathCrawIer—onI!ne is essentially protected in the f PathCrawler-online does not currently propose testing on
following ways from this danger (see also [10]). different target platforms. It is up to the user to recover
« PathCrawler-online runs Stage 2 (Figure 2) in a virtualthe test inputs or drivers and re-run the tests on the target
machine in order to ensure that it is isolated from otherplatform. However, testing on different target platforms
data and so that a program crash cannot impact theould be proposed without changing the fundamental design
server. The virtual machine protects from unauthorizedof PathCrawler-online. The PathCrawler method described
access to the files outside, but a limited informationin Section Il would have to be extended in three places.
exchange with external files has to be allowed in some Firstly, the semantics of the C instructions used in the
way in order to transfer into the virtual machine the Analyzer would have to take account of platform-specific
files related to the desired test generation task and teeatures such as word length. It is already possible to
extract the results. The privileges of the users executingonfigure the Analyzer to do this for several platforms.
the virtual machine and the program under test inside Secondly, it would be necessary to select the appropriate
are carefully checked and restricted. compiler when compiling the Launcher.
« Moreover, by restricting the resources used by an indi- Thirdly, the Launcher would need to be run on the target
vidual test session, PathCrawler-online prevents attackgjatform or a simulator. The architecture of PathCrawler-
based on saturation of the memory or fork bombs (with-gn|ine allows the Path Explorer and Solver modules to be run

out needing to completely forbid the fork operation). on a different platform to the Launcher because the Launcher
« PathCrawler-online takes advantage of the necessaly 5 separate process.

analysis of the source code to reject programs contain-
ing potentially dangerous instructions, such as assemblfz. Pricing
code. PathCrawler-online currently provides a restricted s&rvi
« Finally, PathCrawler-online deactivates network accessor free. It may be desirable to maintain a level of use which
in the virtual machine. In our opinion, the number andis free, in order to tempt user into trying the service. In
variety of attacks using the Internet today would make itorder to overcome the restrictions of the free service and
very difficult to provide a reliable public testing service take advantage of the cloud, the user would have to pay.
similar to PathCrawler-online for software using the This raises the question of the pricing strategy.
Internet. Because of the nature of structural test-case generation,
The issues described above are related to those encoutie user who just pays for the CPU time consumed by the
tered in commercial PaaS clouds where the user code i®st session has no way of knowing in advance the cost of
executed in the cloud. For example, Google App Enginehe test session. This is because the CPU time depends on
[11] also uses virtualization to secure execution, but itsthe number of test-cases necessary to achieve the desired
limitations are different from PathCrawler-online. Exéon coverage, but also on the number of infeasible paths and the
of C code is forbidden in Google App Engine, while difficulty of the corresponding constraint problems.

Users may prefer to pay a fixed price per test. From their « PathCrawler uses constraint solving over finite do-
point of view, the more they pay, the more their implemen- mains, which also offers interesting perspectives for
tation is tested. However, the supplier of the service must parallelization.
then estimate the risk that certain implementations contai Another potential benefit of TaaS described in [13] could
a great many infeasible paths (which don’t result in a testalso be transposed to PathCrawler. When many users make
case) or contain paths that pose a constraint problem whicgalls to the same libraries, the test results for these calls
takes a long time to resolve. can be stored. In the case of PathCrawler, the previously

The pricing of a similar test service is discussed in [12].discovered path predicates of the library functions could
They propose a cost per marginal increase in coverage whidhe used to avoidpath explosion This occurs when all
would be higher as the coverage increases, reflecting the fagombinations of paths through the tested function with¢hos
that the last percentage points of coverage often require mothrough called functions must be explored. It could be
CPU time than the first. They also propose the alternative ofvoided by using the stored path predicates to predict when
a price per bug found but this has the disadvantage of beinfurther exploration of the called function cannot increase
completely unpredictable for the test-service provider. coverage of the tested function.

V. RELATED WORK
Most current commercial use of software testing in the

In order to avoid denial-of-service problems, PathCrawler cloud [14] consists of providing test execution platforros
online restricts the resources which can be used duringeb, desktop or mobile applications, with some providers
any one test session. These resources include disk spaegso allowing access to testing tools.
memory and execution time. If PathCrawler-online were A non-commercial example of work with a similar goal
to be extended to Testing in the Cloud, then almost allbut not publicly available as an online service to our knowl
restrictions could be lifted. edge) is D-Cloud [15], [16]. This is a large-scale software

PathCrawler-online proposes a unit-test service so avoidgsting environment which has been developed to ensure
the performance problems posed by testing large systemdependable distributed systems. D-Cloud can use computing
However, structural coverage, and particularly path coverresources provided by the cloud to execute several test-
age, requires many test cases and their automatic gemeratieases simultaneously, and thus accelerate the softwdiregtes
can demand a lot of resources. Much research has begnocess.
carried out in the optimization of automatic structuralttes PathCrawler-online proposes a completely different ser-
case generation. Sometimes path coverage is not possiblgce: automatic structural unit testing of C code based on
and branch or condition coverage is preferred. Howeverthe automatic generation of test-case inputs.
a complementary angle of attack is to make use of the PathCrawler-online is similar to the service envisaged
increased computing resources available in the cloud. in the Cloud9 [13] project: a cloud-based testing service

PathCrawler-online currently takes advantage of the multibased on the KLEE testing tool. Cloud9 implements parallel
core architecture of the server to run several test sessions symbolic execution for computer clusters operating on pub-
parallel but each test-session is run sequentially. Depéoyt lic cloud infrastructures such as Amazon EC2 and clusters
on the cloud offers the possibility of parallelization of running cloud software like Eucalyptus. The underlying-tes
each test session, to speed up testing, and the test-cageneration technique is similar to that used by PathCrawler
generation technique used by PathCrawler seems particularbut Cloud9 is not focussed on unit testing and treats binary

F. Performance

well adapted to parallelization. code rather than C source code. The Cloud9 software is
Parallelization could be implemented at at least threepublicly available but there does not seem to be a publicly
levels: available service based on the software.

. Concolic test generation is based on an alternation The York Extensible Testing Infrastructure (YETI) [17] is

between execution of generated cases (Launcher) arfl]! ?utomated rar_1t<tjom t%s#ng totoI for Java \.N'thl the ability to
the search for new cases (Path Explorer and Solver)tes programs written in different programming languages.

The two processes currently run synchronously, Oné:loud implementation of YETI was shown to significantly

after the other, but they could be run in parallel improve the performances and to solve potential security

. Concolic test generation performs an exploration Ofissues (by executing Java classes on cleaq virtual_ma()hines
the tree of execution paths and this exploration coul owever, there does not seem to be a publicly available TaaS

also be parallelized. This is the focus of the Cloud9 ased on YETI.

project, which is based on a generation method similar VI. CONCLUSION

to PathCrawler’s. Methods for load balancing, tree ex- We explained in the Introduction why automatic testing
ploration strategies to speed up coverage and techniquésols are good candidates for TaaS. We also explained in
to reduce redundant computation are described in [13]Section Il how PathCrawler automates structural unitresti

Year

Total test session

5 Examples

User code

2011

1237

52%

48%

2012

6869

32%

68%

Figure 5.

Total number of test sessions and the rate of testosssfor
predefined examples and for user submitted code

Unit testing is one of the three types of testing identified in
[9] as suitable for the cloud. They argue that the benefits of

(2]

(3]

testing in the cloud also depend on three characteristics of
the application under test: test cases must be independen]

from one another, the operational environment of the test
process must be well known and the application must have
a programmatic interface so that testing can be automated. |

the case of unit testing as performed by PathCrawler, thesdS]

characteristics are indeed present. Unit testing requires
user to encapsulate each software unit, including all dalle
functions, so that it can be run independently. To ensure the
detection of functional defects, the user must also provide
an oracle. Indeed, the user effort is shifted from inventing

(6]

test-cases to formalizing the calling context and oracle of [7]
each tested unit.
The PathCrawler-online test service can be used to con-

tinually accompany the developer during code development.
This is the programmer’s sidekiclole for TaaS described

in [12]. Path coverage requires many tests, which may
take a long time to construct. However, path coverage can
ensure detection of bugs which might be missed by other
criteria and it is the only test criterion which can be used to
guarantee the absence of certain runtime errors or ananali
or do cross-checking. This is why we think that path testin
is a good candidate for deployment on the cloud in order to

N. Williams, B. Marre, P. Mouy, and M. Roger, “PathCrawler:
automatic generation of path tests by combining static and
dynamic analysis,” irEDCC 2005 pp. 281-292.

B. Botella, M. Delahaye, S. Hong-Tuan-Ha, N. Kosmatov,
P. Mouy, M. Roger, and N. Williams, “Automating structural
testing of C programs: Experience with PathCrawler ABT
2009 pp. 70-78.

N. Kosmatov, N. Williams, B. Botella, M. Roger, and
O. Chebaro, “A lesson on structural testing with pathcrawler-
online.com,” iInTAP 2012 pp. 169-175.

N. Kosmatov and N. Williams, “Tutorial on automated struc-
tural testing with PathCrawler. Extended abstract,"TIAP
2012 p. 176.

N. Wiliams and N. Kosmatov, “Structural testing with
PathCrawler. Tutorial synopsis.” iQSIC 2012 pp. 289-292.

L. M. Riungu, O. Taipale, and K. Smolander, “Software
testing as an online service: Observations from practice,” in
STITC 2010 pp. 418-423.

[8] ——, “Research issues for software testing in the cloud,” in

CloudCom 2010pp. 557-564.

[9] T. Parveen and S. R. Tilley, “When to migrate software testing

10]

gain access to increased resources. We explain in Section IV
why the test-generation method used by PathCrawler should
lend itself well to distribution on different machines.

of test sessions has reached 700 per month. Secondly, eat

(11]
To our knowledge, PathCrawler-online was the first test-
case server of its kind freely available online. It has been i
operation for two years now and we have observed a trent2]
in its use that is illustrated by the statistics in Figure 5.
Firstly, the number of users is increasing, and the number

to the cloud?” inSTITC 2010 pp. 424-427.

N. Kosmatov,Software Testing in the Cloud: Perspectives on
an Emerging Discipline 1GI Global, 2012, ch. XI: Concolic
Test Generation and the Cloud: Deployment and Verification
Perspectives, pp. 231-251.

Google, “Google App Engine Documentation,” 2012,
https://developers.google.com/appengine/.

G. Candea, S. Bucur, and C. Zamfir, “Automated software
testing as a service,” i8oCC 2010Q)pp. 155-160.

] L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and G. Can-

use was often restricted to running the predefined examples
proposed by the server but recently this has changed. There

has been a significant increase in the number of uploads ¢fy4)
the user’s own code, including some quite large programs.

In other words, we have the impression that the use of
PathCrawler-online is evolving from an evaluation version
and a teaching aid towards a test service. This use is clear{§5]
restricted today by concerns about the confidentiality ef th

source code, and by the limits on resources that we are
obliged to impose as long as all sessions are run on one

server. This is why we are studying how our experience of[]
providing a limited testing service for free could help ieth

design of a commercial cloud-based deployment.
REFERENCES

[1] N. Williams, B. Marre, and P. Mouy, “On-the-fly generation
of k-paths tests for C functions : towards the automation of

grey-box testing,” inASE 2004 pp. 290-293.

(17]

dea, “Cloud9: a software testing servic@perating Systems
Review vol. 43, no. 4, pp. 5-10, 2009.

L. Riungu-Kalliosaari, O. Taipale, and K. Smolander, “Testing
in the Coud: Exploring the Practicd EEE Softwarevol. 29,
no. 2, pp. 46-51, 2012.

T. Banzai, H. Koizumi, R. Kanbayashi, T. Imada, T. Hanawa,
and M. Sato, “D-Cloud: Design of a software testing environ-
ment for reliable distributed systems using cloud computing
technology,” inCCGrid 2010 pp. 631-636.

16] T. Hanawa, T. Banzai, H. Koizumi, R. Kanbayashi, T. Imada,

and M. Sato, “Large-scale software testing environment using
cloud computing technology for dependable parallel and
distributed systems,” iISTITC 2010 pp. 428-433.

M. Oriol and F. Ullah, “Yeti on the cloud,” iSTITC 2010
pp. 434-437.

