
© 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for 

all other uses, in any current or future media, including reprinting/republishing this material for 

advertising or promotional purposes, creating new collective works, for resale or redistribution to 

servers or lists, or reuse of any copyrighted component of this work in other works. 



On Complexity of All-Paths Test Generation.
From Practice to Theory

Nikolai Kosmatov
CEA LIST

Software Safety Laboratory, PC 94
91191 Gif-sur-Yvette France
Nikolai.Kosmatov@cea.fr

Abstract

Automatic structural testing of programs becomes more
and more popular in software engineering. Among the most
rigorous structural coverage criteria,all-paths coveragere-
quires to generate a set of test cases such that every fea-
sible execution path of the program under test is executed
by one test case. This article addresses different aspects of
computability and complexity of constraint-based all-paths
test generation for C programs from the practitioner’s point
of view, and tries to bridge the gap between mathematical
theory and practical computation problems arising in this
domain.

We focus on two particular classes of programs impor-
tant for practice. We show first that for a class containing
the simplest programs with strong restrictions, all-pathstest
generation in polynomial time is possible. For a wider class
of programs in which inputs may be used as array indices
(or pointer offsets), all-paths test generation is shown tobe
NP-hard. Some experimental results illustrating test gener-
ation time for programs of these classes are provided.

Keywords: all-paths test generation, computability,
complexity.

1 Introduction

Testing is nowadays the primary way to improve the re-
liability of software. Software testing costs may achieve up
to 50% of the total cost of software development. Auto-
matic test generation helps to reduce this cost. The increas-
ing demand has encouraged much research on automation
of software testing.

In constraint-based test generation, commonly used
since 1990’s, the program under test (or its formal model)
and the desired coverage criterion are first translated into
a constraint solving problem. Then a constraint solver is

called to solve the constraints and to providea test case,i.e.
input values for all input variables, which may be accompa-
nied byan oracle,i.e. the expected behavior of the program
on this input.

Among other novel techniques, various combinations
of concrete and symbolic execution were developed dur-
ing the last five years. They were successfully applied
in implementation of several testing tools for C programs:
PathCrawler [2, 15, 16], DART [5], CUTE [13], EXE [3].
These techniques appeared to be particularly beneficial in
path-orientedtesting, according to the classification of [4].
For example, theall-paths test coverage criterion[18] re-
quires to generate a set of test cases such that every pos-
sible execution path of the program under test is executed
by one test case. The number of possible inputs is assumed
to be finite (otherwise the number of paths may be unlim-
ited, Cf Section 3). This criterion being very strong and
often unreachable, weaker path-oriented criteria were pro-
posed, requiring to cover only paths of limited length, or
with limited number of loop iterations, etc. The paths are
often explored in depth-first search [5, 13, 15, 16], some-
times in breadth-first search [17] or by mixed heuristics [3].
When path coverage is too strong for the program under
test, one may use theall-statements criterion(every reach-
able statement must be executed by some test case) and the
all-branches criterion(every reachable edge must be exe-
cuted) [18].

In the context of increasing applications of automatic test
generation in industry, the test engineer today is often un-
able to evaluate the computability and complexity of auto-
matic test generation with a particular test criterion for a
given program. The related theoretical results, often diffi-
cult to find and to understand for a practitioner, usually con-
sider the most general case and give only negative answers.
However, particular programs encountered in practice are
seldom as much complicated as “the worst case” consid-
ered by the theorists. A detailed study of complexity issues



1 #define D 4
2 int atU( int x[D], int y[D], int u ) {
3 int i = 1;
4 while( i < D ) {
5 if( u < x[i] )
6 break;
7 i++; }
8 return y[i-1];
9 }

3
4
+ −

5
+

−

7
8

b

b

bb

b

bb

b

(a) (b)

Figure 1. (a) Function atU, and (b) its control-flow graph

of test generation for different types of programs and cri-
teria, depending on the features used in the program, may
seem of little interest to a theorist, but will be extremely
useful for a practitioner.

The motivation of this paper is to initiate such a study
of computability and complexity of automatic test genera-
tion for particular classes of programs that may appear in
practice. In this paper, we focus on the all-paths coverage
criterion. We present first the depth-first all-paths test gen-
eration and illustrate it on a running example (Section 2).

Contributions. Our main contribution is to consider two
classes of programs. In the first case (Section 3), under ap-
propriate restrictions on the size, the number and the form
of the resulting constraints, we show that all-paths test gen-
eration in polynomial time is possible (Theorem 2). This
result is based on Pratt’s method [11, 12] of solving differ-
ence constraints in polynomial time. Formally speaking,
we only show that the total time of constraint solving is
polynomial, but this phase appears to be the only expensive
step in the test generation method in practice. We deduce
polynomial complexity of test generation for weaker cover-
age criteria, such as all-branches and all-statements criteria
(Corollary 3).

Next (Section 4), we consider a wider class of programs
which may contain in addition input variables used as array
indices (or pointer offsets) and constraints with6=. We give
a simple sketch of proof by an original reduction from the
Hamiltonian cycle problem that all-paths test generation for
such programs may be NP-hard (Theorem 5), so all-paths
test generation for such programs in polynomial time is not
possible (unless P=NP). Section 5 provides experimental
results of all-paths test generation for some classes of pro-
grams considered in Sections 3 and 4. We finish by a con-
clusion and future work (Section 6).

To make this paper easily understandable for a specialist
in computational complexity theory as well as for a prac-
titioner in software testing, we recall some notions of both
domains, give a simplified presentation of the depth-first all-

paths test generation and provide in Section 4 a sketch of
proof using a simple C program rather than a more formal
proof in terms of Turing machines. The reader will find an
introduction to the theory of computation in [6]. For more
information on constraint-based software testing, we refer
the reader to [8] and references in [8].

2 All-Paths Test Generation in Depth-First
Search

In this section, we briefly describe a simplified
PathCrawler-like method for generation of all-paths testsfor
C programs. We consider C programs with integer types,
arrays, pointers (where input variables do not appear in in-
dices or offsets), conditionals and loops. Similar methods
were used in other tools as DART [5] and CUTE [13]. Let
us denote the C function under test byf .

The PathCrawler tool [2, 15, 16] is developed at CEA
LIST and contains two main modules. The first one, based
on the CIL library [10], translates the instructions of the
C source code off into constraints and creates itsinstru-
mented versionwhose execution on any test case traces the
execution path inf . Next, the user may modify some de-
fault test parameters and providesa precondition, i.e. the
conditions on the inputs off for which the behavior off is
defined and must be tested. The second module,test gener-
ator, is implemented in Prolog language. It reads the con-
straints off and the precondition, and generates test cases
satisfying the all-paths criterion. The program paths are ex-
plored in a depth-first search. The generator is based on
an original combination of constraint-based symbolic exe-
cution and concrete execution of instrumented code. Sym-
bolic execution translates the test generation problem fora
(partial) program path into constraints and calls a constraint
solver to generate a test case executing this path. Con-
crete execution (of compiled instrumented code) allows to
quickly find the program path executed by some test case.
PathCrawler uses COLIBRI, an efficient constraint solver
developed at CEA LIST and shared with GATeL [9] and



(1) Mem. Constraints
x[j] 7→ Xj 〈precond〉
y[j] 7→ Yj

u 7→ U

π = ǫ

 

Test 1: U = 2
X0 = 0 Y0 = 19
X1 = 5 Y1 = 17
X2 = 11 Y2 = 5
X3 = 16 Y3 = 15
σ = 4+, 5+

→

(2) Mem. Constraints
x[j] 7→ Xj 〈precond〉, 1 < 4,
y[j] 7→ Yj U ≥ X1

u 7→ U

i 7→ 1
π = 4+, 5−⋆

 

Test 2: U = 4
X0 = 1 Y0 = 1
X1 = 4 Y1 = 7
X2 = 9 Y2 = 10
X3 = 14 Y3 = 9
σ = 4+, 5+

→

(3) Mem. Constraints
x[j] 7→ Xj 〈precond〉, 1 < 4,
y[j] 7→ Yj U ≥ X1, 2 < 4,
u 7→ U U ≥ X2

i 7→ 2
π = 4+, 5−⋆ , 4

+, 5−⋆

 

Test 3: U = 19
X0 = 2 Y0 = 8
X1 = 4 Y1 = 5
X2 = 16 Y2 = 2
X3 = 20 Y3 = 4
σ = 4+, 5+

→

(4) Mem. Constraints
x[j] 7→ Xj 〈precond〉, 1 < 4,
y[j] 7→ Yj U ≥ X1, 2 < 4,
u 7→ U U ≥ X2, 3 < 4,
i 7→ 3 U ≥ X3

π = 4+, 5−⋆ , 4
+, 5−⋆ , 4

+, 5−⋆

 

Test 4: U = 18
X0 = 1 Y0 = 0
X1 = 11 Y1 = 7
X2 = 15 Y2 = 9
X3 = 18 Y3 = 11
σ = 4−

→

(5) Mem. Constraints
x[j] 7→ Xj 〈precond〉, 1 < 4,
y[j] 7→ Yj U ≥ X1, 2 < 4,
u 7→ U U ≥ X2, 3 < 4,
i 7→ 4 U ≥ X3, 4 < 4
π = 4+, 5−⋆ , 4

+, 5−⋆ , 4
+, 5−⋆ , 4

+
⋆

 〈unsatisfiable〉

→

(6) Mem. Constraints
x[j] 7→ Xj 〈precond〉, 1 < 4,
y[j] 7→ Yj U ≥ X1, 2 < 4,
u 7→ U U ≥ X2, 3 ≥ 4,
i 7→ 3
π = 4+, 5−⋆ , 4

+, 5−⋆ , 4
−
⋆

 〈unsatisfiable〉

→ . . .

Figure 2. Depth-first generation of all-paths tests for the f unction atU of Figure 1

OSMOSE [1] testing tools.

We assume that the program under test has at most one
instruction per line and one condition per decision. (The
first step of the PathCrawler tool transforms multiple condi-
tions into simple ones by introducing additional conditional
instructions.) We denote a program pathρ by a sequence of

line numbers, e.g.

ρ = 3, 4+, 5−, 7, 4+, 5+, 6, 8

is a path for the program of Figure 1. For control points (in
conditional or loop statements), the line number is followed
by a “+” if the condition is true, and by a “−” otherwise.



Since a program path is uniquely determined by its deci-
sions, we may abbreviate a path by the sequence of its de-
cisions only, e.g.ρ = 4+, 5−, 4+, 5+. We will mostly use
such abbreviated notation. The empty path is denoted byǫ.

The mark “⋆” after a decision will indicate that the depth-
first search has already completely explored its negation, i.e.
the other branch in the tree of all execution paths. For exam-
ple, the mark “⋆” in the pathρ = 4+, 5−⋆ , 4

+, 5+ means that
we have already explored all paths of the form4+, 5+, . . .

and tried to generate a test case for each of them.
During a test generation session, the generator maintains

the following data:

• a table representing the program memory at every mo-
ment of symbolic execution. It can be seen as a map-
pingSymb 7→ V al which associates a valueV al to a
symbolic nameSymb. The symbolic nameSymbmay
denote a variable name or an array element. The value
V al may be a constant or a Prolog logical variable.

• a partial program pathπ in f . If a test case is suc-
cessfully generated for the partial pathπ, thenσ will
designate the remaining part of the complete path it
executes.

• a constraint store containing the constraints collected
by the symbolic execution of the current partial path
π.

We can now describe the test generation method. It con-
tains the following steps:

(Init) Create a logical variable for each input and associate
it with the input. Set the initial values of initialized vari-
ables. Add constraints corresponding to the precondition.
Let the initial partial pathπ be empty. Continue to (Step 1).

(Step 1) Let σ be empty. The generator symbolically exe-
cutes the partial pathπ, that is, adds constraints and updates
the memory table according to the instructions inπ. If some
constraint fails, continue to (Step 4). Otherwise, continue to
(Step 2).

(Step 2) The constraint solver is called to generate a test
case, that is, concrete values for the inputs, satisfying the
current constraints of the constraint store. If it fails, goto
(Step 4). Otherwise, continue to (Step 3).

(Step 3) Execute the instrumented version of the program
on the test case generated in the previous step to trace the
complete execution path. The complete path must start by
π (by definition of the constraint solving problem for which
the test case was generated). Write the remaining part of the
path intoσ. Continue to (Step 4).

(Step 4) Letρ be the concatenation ofπ andσ. Try to find in
ρ the last unmarked decision, i.e. the last decision without

a “⋆” mark. If ρ does not contain any unmarked decision,
exit. Otherwise, ifx± is the last unmarked decision inρ, let
π be the subpath ofρ beforex±, followed byx∓⋆ (i.e. the
negation ofx± marked as already processed), and continue
to (Step 1).

We see that Step 4 chooses the next partial path in a
depth-first search. It changes the last unmarked decision
in ρ to look for differences as deep as possible first, and
marks a decision with a “⋆” when its negation (i.e. the other
branch from this node in the tree of all execution paths) has
already been fully explored. For example, if

ρ = a−⋆ , b
+, c+, d−⋆ , e

+
⋆ ,

the last⋆ means that the depth-first search has already pro-
cessed all paths of the form

a−, b+, c+, d−, e−, . . .

The previous⋆ (in d−⋆ ) means that the depth-first search has
already processed all paths of the form

a−, b+, c+, d+, . . .

The last unmarked decision inρ is c+, so Step 4 will take
the subpath ofρ before this decisiona−⋆ , b

+, and addc−⋆ to
obtain the new partial pathπ = a−⋆ , b

+, c−⋆ . Notice that this
way to mark conditions with a “⋆” keeps the information
that some shorter partial paths have already been fully ex-
plored (here, paths of the forma+, . . . are fully explored),
and adds this information for the negation of the last condi-
tion (here, the pathsa−, b+, c+, . . . are fully explored).

We illustrate this method on the example of functionatU

of Figure 1. This function is the simplest form of interpo-
lation. It takes three parameters, two arraysx, y (each one
with D integers) and an integeru. Let us define the precon-
ditionψatU of atU as follows:

D ≥ 1, x containsD elements,
y containsD elements,

0 ≤ x[0] < x[1] < · · · < x[D− 1] ≤ Max,
x[0] ≤ u ≤ x[D− 1],

0 ≤ y[0], y[1], . . . , y[D− 1] ≤ Max.

(ψatU)

The valuesy[j] are supposed to be the values of some
functionh at the pointsx[j], i.e. h(x[j]) = y[j], 0 ≤ j ≤
D − 1. The functionatU returns the value ofh in the clos-
est point to the left ofu in which the value ofh is known.
In other words, it finds the greatestk with x[k] ≤ u and
returnsy[k]. Max is a positive constant (for example, the
maximal integer MAXINT of the system). For simplicity
of our example, we assumeD = 4 andMax = 20.

The test generation session for the functionatU is shown
in Figure 2, where “ ” denotes the application of (Step 2)



and (Step 3), and “→” the application of (Step 4) and
(Step 1). First, (Init) creates logical variablesXj , Yj (0 ≤
j ≤ 3) andU to represent the inputs as shown in (1) of Fig-
ure 2. The first two lines of (ψatU) being now satisfied, (Init)
adds into the constraint store the3D + 3 inequalities corre-
sponding to the last three lines of (ψatU), which are denoted
by 〈precond〉 in Figure 2:

0 ≤ X0, X0 < X1, X1 < X2, X2 < X3, X3 ≤ 20,
X0 ≤ U, U ≤ X3,

0 ≤ Y0, . . . , 0 ≤ Y3,

Y0 ≤ 20, . . . , Y3 ≤ 20.

The first partial pathπ being always empty, (Step 1) has
nothing to do now. Next, (Step 2) generates the first test
case, Test 1. (Step 3) executes Test 1 on the instrumented
version of the program and obtainsσ = 4+, 5+ (that is an
abbreviation for3, 4+, 5+).

We are now going from (1) and Test 1 to (2) in Figure 2.
(Step 4) findsρ = 4+, 5+, where5+ is the last unmarked
decision. Therefore, it setsπ = 4+, 5−⋆ . Next, (Step 1) sym-
bolically executes the partial pathπ in constraints, node by
node, for unknown inputs. The execution of the assignment
3 addsi 7→ 1 to the memory table. The execution of the
decision4+ adds the constraint1 < 4 trivially true, and the
execution of the decision5− adds the constraintU ≥ X1,
after replacing the variablesi, u andx[1] by their current
values in the memory table. Next, (Step 2) generates Test 2,
and (Step 3) executes it and obtainsσ = 4+, 5+.

We are now going from (2) and Test 2 to (3) in Fig-
ure 2. (Step 4) findsρ = 4+, 5−⋆ , 4

+, 5+ and setsπ =
4+, 5−⋆ , 4

+, 5−⋆ . (Step 1) symbolically executesπ, (Step 2)
generates Test 3, and so on. Let us now move from (4) and
Test 4 to (5) in Figure 2. (Step 4) finds

ρ = 4+, 5−⋆ , 4
+, 5−⋆ , 4

+, 5−⋆ , 4
−

and setsπ = 4+, 5−⋆ , 4
+, 5−⋆ , 4

+, 5−⋆ , 4
+
⋆ . The last constraint

4 < 4 added by symbolic execution at (Step 1) is obviously
false, so the generator goes directly to (Step 4), which sets
π = 4+, 5−⋆ , 4

+, 5−⋆ , 4
−
⋆ . As shows (6) in Figure 2, the last

constraint3 ≥ 4 added by (Step 1) fails again, so the gener-
ator continues to (Step 4). The steps after (6) are not shown
in Figure 2. Similarly, the generator will try the partial paths
π = 4+, 5−⋆ , 4

−
⋆ andπ = 4−⋆ , which are also infeasible, and

stops. A test case was generated for each of the 4 feasible
paths.

In general, if during some execution of (Step 1) or
(Step 2), the constraints are unsatisfiable and no test case
can be generated, thenπ is infeasible and the algorithm
continues the exploration of other paths normally. If it hap-
pens at (Init) or at the very first iteration of (Step 2), that is,
the precondition is unsatisfiable, then the algorithm stopsat
(Step 4) sinceρ is empty.

3 All-Paths Test Generation in Polynomial
Time

In this section, we give sufficient conditions for a class of
all-paths test generation problems to be solvable in polyno-
mial time. It is intuitively clear that all-paths test generation
for a program may take much time for (one or several of)
the following reasons:

(†) the program has a great number of paths and, therefore,
results in a great number of constraint solving prob-
lems,

(††) the instructions of the program result in complex con-
straints which cannot be solved fast,

(†††) the program has very long paths giving rise to prob-
lems with too many constraints.

We show that under appropriate restrictions for these three
issues, all-paths test generation in polynomial time becomes
possible.

In practice, the most expensive step of the all-paths test
generation method is constraint solving in (Step 2), so we
focus on the constraint solving time. Our experience with
the PathCrawler tool shows that the other steps (instrumen-
tation, translation into constraints, symbolic executionetc.)
are done very efficiently. For example, the first module
of PathCrawler, which instruments the program under test
and translates it into constraints, takes less than or about1
minute for programs with hundreds or thousands of lines.
Since the performance of these steps depends on many im-
plementation details and appears quite satisfactory in prac-
tice, we do not discuss it here in detail. Notice that test gen-
eration time in experiments of Section 5 includes all steps of
the test generation process, from source code to generated
test cases.

We definean all-paths test generation problemas

Φ = (P, f, ψ)

whereP is a C program,f is a function inP to be tested
andψ is a precondition off . A solution of Φ is a set of
test cases satisfying the all-paths criterion. The precondi-
tion may contain information necessary for correct initial-
ization of test generation (e.g. input array sizes, domain
of variables, etc.) and any other conditions on the input
variables restricting admissible inputs off . We denote by
LΦ

P > 0 the length of the programP .
The number of possible inputs must be finite (and not

only bounded by the available computer memory, which is
assumed sufficiently large). Indeed, if the number of inputs
is unlimited, the number of paths may be unlimited and test
generation of all-paths tests will not terminate. It happens



1 char LastChar(char str[]) {
2 while( *(str + 1) != 0 )
3 str = str + 1;
4 return * str;
5 }

Figure 3. Function LastChar returns the last
non-zero symbol in a given non-empty string

for the functionLastChar of Figure 3, which takes a non-
empty zero-terminated string and returns the last non-zero
symbol.

Therefore, we assume thatψ bounds by someLΦ
I > 0

the maximal length of admissible inputs forΦ, measured in
number of bytes, or up to a constant, of integers.

We definea system of difference constraintsas a system
of constraints of the form

x− y ≤ c, or x ≤ c, or x ≥ c,

wherex, y are integer variables andc is an integer. An
equalityx − y = c can be represented asx − y ≤ c and
y − x ≤ −c.

Theorem 1 ([11, 12]) A system of difference constraints
may be solved in polynomial timeg(m,n), whereg(X,Y )
is a polynomial,n is the number of variables andm is the
number of constraints.

The reader will find various estimatesg in [12]. We are
now ready to state the main result of this section. Notice
that the conditions (i), (ii), (iii) precisely correspond to the
three reasons(†), (††), (†††) stated above.

Theorem 2 Let C be a class of all-paths test generation
problems, andg1(X,Y ), g2(X,Y ) two polynomials. Sup-
pose that every problemΦ = (P, f, ψ) of C satisfies the
following properties:

(i) the number of program paths inΦ for which the
method will try to generate a test case is bounded by
g1(L

Φ
P , L

Φ
I ),

(ii) symbolic execution of any program path (including the
precondition) adds only difference constraints,

(iii) symbolic execution of any program path (including the
precondition) adds at mostg2(LΦ

P , L
Φ
I ) constraints.

Then there exists a polynomialg3(X,Y ) such that the total
constraint solving time in the all-paths test generation for
Φ is bounded byg3(LΦ

P , L
Φ
I ).

1 #define D 4
2 int bsearch(int a[D], int key) {
3 int low = 0; int high = D-1;
4 while (low <= high) {
5 int mid = low + (high-low)/2;
6 int midVal = a[mid];
7 if (midVal < key)
8 low = mid+1;
9 else if (midVal > key)

10 high = mid-1;
11 else
12 return mid;
13 }
14 return -1;
15 }

Figure 4. Function bsearch for binary search
of a given element key in a given sorted array
a of length D

Sketch of proof. Assume without loss of generality that
g(X,Y ) is monotonic in each argument forX > 0, Y > 0.
LetΦ = (P, f, ψ) be an all-paths test generation problem of
C. By (i), the all-paths test generation method forΦ solves
at mostg1(LΦ

P , L
Φ
I ) constraint solving problems. By (ii),

the constraint solving problem created for any program path
(hence, for any partial path) ofΦ is a system of difference
constraints. By (iii), the number of constraints in the system
m ≤ g2(L

Φ
P , L

Φ
I ). The number of variablesn is bounded

by LΦ
I . It follows that the total constraint solving time is

bounded by

g1(L
Φ
P , L

Φ
I )g(m,n) ≤ g3(L

Φ
P , L

Φ
I ),

whereg3(X,Y ) := g1(X,Y )g(g2(X,Y ), Y ). �

We intentionally allow to bound the number of paths and
constraints by the length of the program, or the length of the
input, or both, because different estimates may be useful in
different examples. Notice also that the number of paths
mentioned in (i) includes infeasible partial paths like those
seen in Section 2, but does not include several infeasible
paths starting with the same infeasible partial path. Indeed,
the depth-first method adds at most one new constraint to
those of a feasible partial path, so it never tries to gener-
ate a test case for two longer paths starting with the same
infeasible partial path.

Let us apply Theorem 2 to an example. Consider
the family of all-paths test generation problemsΦD =
(PD, atU, ψatU), whereD > 0 is a parameter,PD is the pro-
gram of Figure 1 containing the functionatU, and the pre-
conditionψatU is defined in Section 2. The number of input
variables inΦD is 2D + 1, soLΦD

I = 2D + 1. The number



of partial paths inΦD for which the method will try to gen-
erate a test case is equal to2D ≤ LΦD

I as required by (i).
Symbolic execution of paths forΦD adds only difference
constraints (hence (ii) is satisfied), with3D + 3 constraints
for the precondition and2D − 1 constraints for the longest
path, so(3D + 3) + (2D − 1) ≤ 3LΦD

I as required by (iii).
The conditions of Theorem 2 are verified, so all-paths test
generation in polynomial time is possible for this example.

Similarly, this theorem may be applied for other interpo-
lation functions occurring in practice, or other search func-
tions in an array, such as the functionbsearch of binary
search in a sorted array given in Figure 4. The function
bsearch performs a classical binary (dichotomic) search
of a given elementkey in a given sorted arraya of lengthD.
It returns the index of some occurence ofkey in a, or−1 if
key does not appear ina. At first glance, the assignment of
line 5 in Figure 4 provides a constraint that is not a differ-
ence one. In fact, for any given program path, the right-hand
side of the assignments in lines 3, 5, 8, 10 contain only con-
stants and no input variables, so they only require a direct
computation of the new value of a variable and do not add
a constraint on input variables to the constraint store during
symbolic execution of a partial program path.

Since all-paths coverage criterion subsumes other cri-
teria such as all-branches coverage or all-statements cov-
erage [18], the following result immediately follows from
Theorem 2.

Corollary 3 Let C be a class of all-paths test generation
problems satisfying the conditions of Theorem 2. Then the
total constraint solving time necessary to generate tests for
all-branches (or all-statements) coverage is polynomial.

4 All-Paths Testing with Internal Aliases is
NP-hard

In this section we consider a wider class of all-paths test
generation problems, where constraints with6= are allowed,
and array indices (or pointer offsets) may depend on input
variables. Presence of unknown indices (or offsets) during
symbolic execution with unknown inputs leads to the prob-
lem of internal aliases,as we called them in [7]. Indeed, if
j is an input variable or was assigned a value that depends
on some input variable, the expressiona[j] is a non-trivial
alias for one of the elements ofa. Using input variablesp[j]
as indices in the arrayG in lines 26, 28 of Figure 5a is an-
other example of internal aliases. All-paths test generation
for programs with internal aliases was considered in [7] and
an extension of the method of Section 2 for such programs
was proposed.

We will use the well-known Hamiltonian cycle problem.
A Hamiltonian cyclein a directed graphG is a cycle which

visits each vertex ofG exactly once and returns to the start-
ing vertex. For example, Figure 5b represents a directed
graph with five vertices{0, 1, 2, 3, 4} which has a Hamilto-
nian cycle. We may identify a directed graph with itsadja-
cency matrix. Its elementG(i, j) is 1 if G has an arc fromi
to j, and0 otherwise. We prefer here the mathematical no-
tationG(i, j), p(i) (in roman font) to the C notationG[i][j],
p[i] (written in TrueType). In lines 5–11 of Figure 5a,G is
the graph of Figure 5b (withN = 5 vertices) defined by its
adjacency matrix. The first loop in the functionHC checks
that the elements ofp are in{0, 1, . . . , N − 1} and are all
different (lines 15–23). It means thatp is a bijection of
{0, ..., N−1} onto itself, ora permutation of{0, ..., N−1}.
HC returns 1 ifp is a permutation of vertices ofG and

p(0) → p(1) → · · · → p(N − 1) → p(0)

is a Hamiltonian cycle inG, and 0 otherwise (lines 25–32).
The preconditionψHC is defined as:

p containsN elements,
0 ≤ p(j) ≤MAXINT.

(ψHC)

We assume the following Conjecture 4, a consequence
of the famousP 6= NP conjecture strongly believed to be
true, and state the main result of this section.

Conjecture 4 ([6, Section 10.4.4]) There is no algorithm
deciding in polynomial time if a given directed graph has
a Hamiltonian cycle.

Theorem 5 There exists no polynomial-time algorithm for
all-paths test generation problems for programs with inter-
nal aliases.

Sketch of proof. Assume the contrary. LetA be a
polynomial-time algorithm that, given an all-paths test gen-
eration problemΦ = (P, f, ψ), generates a list

(t1, ρ1), . . . , (tk, ρk)

whereti is a test case,ρi is the execution path activated by
executingf on ti, andρ1, . . . , ρk are all feasible paths of
f . The “polynomial-time algorithm” means that there exist
K,m > 0 such that the number of steps ofA is always
bounded by the polynomialK(LΦ

P + LΦ
I )m, whereLΦ

P is
the length ofP andLΦ

I is the maximal input size.
Then we can construct another algorithmB which, given

the adjacency matrixG of a directed graph and its number
of verticesN ,

B1) constructs a programPG similar to that of Figure 5a
with the givenN andG,

B2) executesA on the problemΦG = (PG,HC, ψHC),

B3) says “yes” ifA has generated a test for the path return-
ing 1, and “no” otherwise.



1 #define N 5 // number of vertices in graph G
2 typedef int graph[N][N];
3 typedef int perm[N];
4 // graph G is defined by its adjacency matrix :
5 graph G = {
6 0,1,0,0,0,
7 0,0,1,0,0,
8 0,0,0,0,1,
9 1,0,1,0,1,

10 1,1,1,1,0
11 };
12
13 int HC(perm p){
14 int i, j;
15 for( i = 0; i < N; i++ ){
16 if( p[i] < 0 )
17 return 0;
18 if( p[i] > N-1 )
19 return 0;
20 for( j = i+1; j < N; j++ )
21 if( p[i] == p[j] )
22 return 0;
23 }
24 // we checked that p is a permutation of {0,...,N-1}
25 for( i = 1; i < N; i++ )
26 if( G[ p[i-1] ][ p[i] ] != 1 )
27 return 0;
28 if( G[ p[N-1] ][ p[0] ] != 1 )
29 return 0;
30 // we checked that p defines the Hamiltonian cycle
31 // p(0) -> p(1) -> ... -> p(N-1) -> p(0) in G
32 return 1;
33 }

(a) (b)

Figure 5. a) For the graph G with N vertices, statically defined by its adjacency matrix, the fu nction
HC checks if p is a permutation of vertices defining the Hamiltonian cycle p(0) → p(1) → · · · →
p(N − 1) → p(0). b) The graph G has the Hamiltonian cycle 0 → 1 → 2 → 4 → 3 → 0.

The size of the input(N,G) of B is proportional toN2:

|G| ≤ |(N,G)| ≤ 2|G|, |G| ∼ N2.

We claim thatB is a polynomial-time algorithm. Indeed,
for some constantsKj > 0, PartB1 copies some pieces of
text whose length is≤ K1N

2. PartB2 executes the algo-
rithmA on the problemΦG with (LΦ

P +LΦ
I ) ≤ K2N

2, so it
takes≤ K(K2N

2)m steps. The function HC has≤ K3N
2

feasible paths, and the length of each path is≤ K4N
2.

PartB3 reads the list of generated tests which may con-
tain≤ K3N

2 couples(ti, ρi) each of length≤ K5N
2. So

B makes≤ K6N
2m +K7N

4 +K8N
2 steps.

It is clear that the path returning 1 in the function HC
of PG is feasible if and only ifG has a Hamiltonian cy-
cle. ThereforeB is a polynomial-time algorithm deciding
if a given directed graphG has a Hamiltonian cycle. The
contradiction with Conjecture 4 finishes the proof. �

Theorem 5 is true even for the simplest programs, such
as that of Figure 5a, where

• the number of paths may be bounded by a polynomial
in program size, so we have a restriction for(†),



atU bsearch

D tests time tests time
4 4 0.50 s 9 0.49 s
10 10 0.52 s 21 0.56 s
50 50 1.38 s 101 2.91 s
100 100 6.06 s 201 12.10 s
500 500 5 m 39 s 1001 6 m 50 s
1000 1000 30 m 46 s 2001 32 m 47 s

Figure 6. Results of all-paths test generation
for functions atU of Figure 1 and bsearch of
Figure 4 for different array sizes D.

• the path length may be bounded by a polynomial in
program size as well, so we have a restriction for(†††),

• the function under testf contains only integers, arrays,
conditionals, assignments and loops with a fixed num-
ber of iterations,

• f contains no function calls and noexternal aliases
(which appear whenf contains pointer inputs and
some memory location is reachable in two different
ways from the inputs, see [7]).

In this example, the complexity of all-paths test generation
is due to(††), i.e. the form of the constraints, which include
internal aliases and6=.

Remark. We have actually shown that the all-paths test
generation problem is NP-hard, i.e. at least as difficult as
the Hamiltonian cycle problem or any other NP-complete
problem. A specialist in complexity theory will notice that
our sketch of proof may be transformed into a strict proof,
since a computer may be simulated by a Turing machine in
polynomial time, and vice versa [6, Section 8.6]. An appro-
priate representation forN andp will solve the problem of
big values overpassing the word length on our computer.

5 Experiments

In this section we provide some experiments with the
PathCrawler tool to illustrate the results of all-paths test
generation for some classes of programs considered in Sec-
tions 3 and 4. The experiments were made on an Intel Core
2 Duo laptop with 1Gb RAM.

Figure 6 shows the experimental results for two func-
tions,atU of Figure 1 andbsearch of Figure 4, for differ-
ent values of parameter D. For each value of parameterD,
the columns “tests” and “time” show the number of gener-
ated test cases and test generation time. Here, PathCrawler
generates exactly one test for each feasible path, so the num-
ber of feasible paths is equal to the number of tests.

HC
N paths tests time
4 15 38 0.66 s
5 21 140 2.10 s
6 28 747 19.75 s
7 36 5 075 4 m 33 s
8 45 40 364 26 m 58 s
9 55 362 934 4 h 2 m 24 s

Figure 7. Results of all-paths test generation
for function HC of Figure 5a (with complete
graphs GN).

We see that test generation time for these functions with
the PathCrawler tool grows rather slowly (clearly under-
exponentially) with the parameterD. So, as it can be
expected by Section 3, all-paths test generation remains
tractable for such programs with hundreds and even thou-
sands of input variables, and PathCrawler provides an effi-
cient test generation method for these programs.

On the other hand, Figure 7 shows experimental results
for the functionHC of Figure 5a with the complete ordered
graphGN with N vertices (i.e. in which there is an arc
from i to j for any verticesi, j). The column “paths” shows
the number of feasible paths. Here, in presence of internal
aliases, PathCrawler generates superfluous test cases. (Ba-
sically, it introduces additional choice points for aliases and
explores all possible combinations when it tries to cover a
program path which it cannot cover otherwise, see [7]).

As predicted in Section 4, we see that test generation
time grows extremely fast (nearly factorially), and all-paths
test generation becomes intractable already forN > 10.
For incomplete graphsG, the number of tests and gen-
eration time are different, but their growth remains over-
exponential.

We also tried a very similar example from a piece of in-
dustrial code with several hundreds of lines of C code (that
we cannot describe here in detail due to intellectual prop-
erty issues), where inputs were also used as indices in a
two-dimensional array. We obtained similar results: all-
paths test generation becomes intractable already for pro-
grams with about 20 input variables.

6 Conclusion and Future Work

All-paths test generation is often believed intractable, but
neither a characterization of programs for which it would
be tractable, nor a description of program features that can
make test generation intractable were really provided. It
seems important to be able to answer these questions.

This paper addresses the problem of evaluation of po-



tential complexity of all-paths test generation for various
classes of programs. Using Pratt’s result on solving differ-
ence constraints [11], we proved a theorem providing suf-
ficient conditions for a class of programs to allow all-paths
test generation in polynomial time. It shows for the first
time that, contrary to what is often believed, all-paths test-
ing can be tractable for some classes of programs occurring
in practice.

We also showed by an original reduction from the Hamil-
tonian cycle problem that all-paths test generation for a
wider class of programs, where array indices and pointer
offsets may depend on the inputs, is intractable (NP-hard).
It gives a concrete example of program features that can
prevent all-paths test generation to be feasible. We met this
situation in an industrial example. These results were illus-
trated by some experiments using the PathCrawler testing
tool.

Future work includes more detailed analysis of the effect
of various features of programming languages on test gener-
ation under different restrictions appearing in practice.The
existence of polynomial-time algorithms for solving other
types of constraints (such as range constraints) [12, 14] may
provide other positive results for test generation that will
help to better understand the applicability of all-paths test-
ing in practice.

We can expect that exhaustive all-paths testing will be in-
tractable in various cases, but test generation for other test
coverage criteria (all statements, all branches, etc.) maybe
easier. We believe that this study will help test engineers to
anticipate the computability and complexity of test genera-
tion and choose an appropriate test coverage criterion for a
particular code.
Acknowledgments. The author thanks Śebastien Bardin,
Bernard Botella, Mickäel Delahaye, Philippe Herrmann,
Bruno Marre and Nicky Williams for useful discussions.

References

[1] S. Bardin and P. Herrmann. Structural testing of executa-
bles. In the First IEEE International Conference on Soft-
ware Testing, Verification, and Validation (ICST’08), pages
22–31, Lillehammer, Norway, April 2008.

[2] B. Botella, M. Delahaye, S. Hong-Tuan-Ha, N. Kosmatov,
P. Mouy, M. Roger, and N. Williams. Automating struc-
tural testing of C programs: Experience with PathCrawler.
In the Fourth International Workshop on the Automation of
Software Test (AST’09), Vancouver, Canada, May 2009.

[3] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler. EXE: automatically generating inputs of death. In
the 13th ACM Conference on Computer and Communica-
tions Security (CCS’06), pages 322–335, Alexandria, Vir-
ginia, USA, November 2006.

[4] R. Ferguson and B. Korel. The chaining approach for
software test data generation.ACM Trans. Softw. Eng.
Methodol., 5(1):63–86, 1996.

[5] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed au-
tomated random testing. Inthe ACM SIGPLAN 2005 Con-
ference on Programming Language Design and Implemen-
tation (PLDI’05), pages 213–223, Chicago, IL, USA, June
2005.

[6] J. E. Hopcroft, R. Motwani, and J. D. Ullman.Introduc-
tion to Automata Theory, Languages, and Computation (2nd
Edition). Addison Wesley, November 2000.

[7] N. Kosmatov. All-paths test generation for programs with in-
ternal aliases. Inthe 19th International Symposium on Soft-
ware Reliability Engineering (ISSRE’08), pages 147–156,
Redmond, WA, USA, November 2008.

[8] N. Kosmatov. Artificial Intelligence Applications for Im-
proved Software Engineering Development: New Prospects,
chapter XI: Constraint-Based Techniques for Software Test-
ing. Advances in Intelligent Information Technologies Book
Series. IGI Global, 2009. ISBN: 1605667587.

[9] B. Marre and A. Arnould. Test sequences generation from
Lustre descriptions : GATeL. Inthe 15th IEEE International
Conference on Automated Software Engineering (ASE’00),
pages 229–237, Grenoble, France, September 2000.

[10] G. C. Necula, S. McPeak, S. Rahul, and W. Weimer. CIL:
Intermediate language and tools for analysis and transforma-
tion of C programs. Inthe 2002 International Conference on
Compiler Construction (CC’02), pages 213–228, Grenoble,
France, Apr. 2002.

[11] V. Pratt. Two easy theories whose combination is hard.
Technical report, MIT, Cambridge, Massachusetts, USA,
September 1977.

[12] G. Ramalingam, J. Song, L. Joskowicz, and R. E. Miller.
Solving systems of difference constraints incrementally.Al-
gorithmica, 23(3):261–275, 1999.

[13] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit
testing engine for C. Inthe 5th joint meeting of the Eu-
ropean Software Engineering Conference and ACM SIG-
SOFT Symposium on the Foundations of Software Engi-
neering (ESEC/FSE’05), pages 263–272, Lisbon, Portugal,
September 2005.

[14] Z. Su and D. Wagner. A class of polynomially solvable range
constraints for interval analysis without widenings.Theor.
Comput. Sci., 345(1):122–138, 2005.

[15] N. Williams, B. Marre, and P. Mouy. On-the-fly generation
of k-paths tests for C functions : towards the automation of
grey-box testing. Inthe 19th IEEE International Conference
on Automated Software Engineering (ASE’04), pages 290–
293, Linz, Austria, September 2004.

[16] N. Williams, B. Marre, P. Mouy, and M. Roger.
PathCrawler: automatic generation of path tests by combin-
ing static and dynamic analysis. Inthe 5th European De-
pendable Computing Conference (EDCC’05), pages 281–
292, Budapest, Hungary, April 2005.

[17] Z. Xu and J. Zhang. A test data generation tool for unit
testing of C programs. Inthe 6th International Conference
on Quality Software (QSIC’06), pages 107–116, Beijing,
China, October 2006.

[18] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit
test coverage and adequacy.ACM Computing Surveys,
29(4):366–427, 1997.


