© 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

On Complexity of All-Paths Test Generation.
From Practiceto Theory

Nikolai Kosmatov
CEALIST
Software Safety Laboratory, PC 94
91191 Gif-sur-Yvette France
Nikolai.Kosmatov@cea.fr

Abstract called to solve the constraints and to provédest casei,e.
input values for all input variables, which may be accompa-
Automatic structural testing of programs becomes more nied byan oracle,i.e. the expected behavior of the program
and more popular in software engineering. Among the moston this input.
rigprous structural coverage criteriall-paths coveragee- Among other novel techniques, various combinations
quires to ge_nerate a set of test cases such tha_t every feabf concrete and symbolic execution were developed dur-
sible execution path of the program under test is executed

. .) ing the last five years. They were successfully applied
by one test case. This article addresses different aspécts 0 implementation of several testing tools for C programs:

computabilit.y and complexity of constraint—bgsed alllf[mf[PathCrawler [2, 15, 16], DART [5], CUTE [13], EXE [3].
tefst_genera(t;(:r} fortC Sr%grar:;]s from tgetvr\)lractltlontehrs riotl_n IThese technigues appeared to be particularly beneficial in
ot view, and tries to bridge the gap between mathematica path-orientedesting, according to the classification of [4].
theory and practical computation problems arising in this For example, thall-paths test coverage criteriofi8] re-

dor\yvalrfl. - ticular ol f . quires to generate a set of test cases such that every pos-
¢ focus on two particular classes of programs IMmpor- gy, e axecytion path of the program under test is executed

:;mt f_or pl)ra(t:tlce. we shgt\;]v fLrSt that fto_r ? class”contalnlng by one test case. The number of possible inputs is assumed
€ simplest programs with strong restrictions, afl-p to be finite (otherwise the number of paths may be unlim-

generation in. polyr.lom.ial time is possible. Forawider clgss ited, Cf Section 3). This criterion being very strong and
?;rpp:g?r:'?eTcs)f;ge\ivsr;lcglllggﬁtjrtfs [[T;ggt;engf;?o?i’sasra?\’lv'ggéces often unreachable, weaker path-oriented criteria were pro
NP-hard. Some ex, erimental results illustrating test gene posed, requiring to cover only paths of limited length, or

: P 9 ge with limited number of loop iterations, etc. The paths are

ation time for programs of these classes are provided. often explored in depth-first search [5, 13, 15, 16], some-
Keywords. all-paths test generation, computability, times in breadth-first search [17] or by mixed heuristics [3]
complexity. When path coverage is too strong for the program under
test, one may use thadl-statements criteriorfevery reach-
able statement must be executed by some test case) and the

1 Introduction all-branches criterion(every reachable edge must be exe-
cuted) [18].
Testing is nowadays the primary way to improve the re- Inthe context of increasing applications of automatic test

liability of software. Software testing costs may achiepe u generation in industry, the test engineer today is often un-
to 50% of the total cost of software development. Auto- able to evaluate the computability and complexity of auto-
matic test generation helps to reduce this cost. The increasmatic test generation with a particular test criterion for a
ing demand has encouraged much research on automatiogiven program. The related theoretical results, often-diffi
of software testing. cult to find and to understand for a practitioner, usually-con

In constraint-based test generation, commonly usedsider the most general case and give only negative answers.
since 1990’s, the program under test (or its formal model) However, particular programs encountered in practice are
and the desired coverage criterion are first translated intoseldom as much complicated as “the worst case” consid-
a constraint solving problem. Then a constraint solver is ered by the theorists. A detailed study of complexity issues

return y[i-1];

1 #define D 4

2 int atU(int x[D, int y[D, int u) {
3 int i = 1;

4 while(i < D) {

5 if(u<x[i])

6 br eak;

7 i++ }

8

9

}
@ (b)

Figure 1. (a) Function atU, and (b) its control-flow graph

of test generation for different types of programs and cri- paths test generation and provide in Section 4 a sketch of

teria, depending on the features used in the program, mayproof using a simple C program rather than a more formal

seem of little interest to a theorist, but will be extremely proof in terms of Turing machines. The reader will find an

useful for a practitioner. introduction to the theory of computation in [6]. For more
The motivation of this paper is to initiate such a study information on constraint-based software testing, werrefe

of computability and complexity of automatic test genera- the reader to [8] and references in [8].

tion for particular classes of programs that may appear in

practice. In this paper, we focus on the all-paths coverage2 ~ All-Paths Test Generation in Depth-First

criterion. We present first the depth-first all-paths test-ge Search

eration and illustrate it on a running example (Section 2).

Contributions. Our main contribution is to considertwo I this section, we briefly describe a simplified
classes of programs. In the first case (Section 3), under apPathCrawler-like method for generation of all-paths téests
propriate restrictions on the size, the number and the formC programs. We consider C programs with integer types,
of the resulting constraints, we show that all-paths test ge aTays, pointers (where input variables do not appear in in-
eration in polynomial time is possible (Theorem 2). This dices or off_sets), conditionals and loops. Similar methods
result is based on Pratt's method [11, 12] of solving differ- Were used in other tools as DART [5] and CUTE [13]. Let
ence constraints in polynomial time. Formally speaking, US denote the C function under test by
we only show that the total time of constraint solving is 1he PathCrawler tool [2, 15, 16] is developed at CEA
polynomial, but this phase appears to be the only expensive‘-'ST and coptains two main modules. The first_ one, based
step in the test generation method in practice. We deduce®" the CIL library [10], translates the instructions of the

polynomial complexity of test generation for weaker cover- C source code of into constraints and creates itsstru-
age criteria, such as all-branches and all-statementsierit Mmented versiomhose execution on any test case traces the

(Corollary 3). execution path inf. Next, the user may modify some de-

Next (Section 4), we consider a wider class of programs fault test parameters and providesprecondition i.e. the
which may contain in addition input variables used as array ¢onditions on the inputs of for which the behavior of is
indices (or pointer offsets) and constraints withwe give defined and must be tested. The second modes¢ gener-

a simple sketch of proof by an original reduction from the &t°r, is implemented in Prolog language. It reads the con-
Hamiltonian cycle problem that all-paths test generation f Straints off and the precondition, and generates test cases
such programs may be NP-hard (Theorem 5), so a||-pathg'5atISfylr_19 the all-pa_ths criterion. The program pqths are e
test generation for such programs in polynomial time is not Plored in a depth-first search. The generator is based on
possible (unless PNP). Section 5 provides experimental &" 'or|g|nal combination of (;onstrglnt—based symbolic exe-
results of all-paths test generation for some classes of pro cUtion and concrete execution of instrumented code. Sym-

grams considered in Sections 3 and 4. We finish by a con-Polic execution translates the test generation problena for
clusion and future work (Section 6). (partial) program path into constraints and calls a coirgtra

solver to generate a test case executing this path. Con-
To make this paper easily understandable for a specialistcrete execution (of compiled instrumented code) allows to
in computational complexity theory as well as for a prac- quickly find the program path executed by some test case.
titioner in software testing, we recall some notions of both PathCrawler uses COLIBRI, an efficient constraint solver
domains, give a simplified presentation of the depth-fitstal developed at CEA LIST and shared with GATeL [9] and

—

OSMOSE [1] testing tools.

We assume that the program under test has at most one
instruction per line and one condition per decision. (The
first step of the PathCrawler tool transforms multiple cendi is a path for the program of Figure 1. For control points (in
conditional or loop statements), the line number is folldwe
by a “+” if the condition is true, and by a

(1) Mem. Constraints
x[j] — X; | (precond

ylil = Y;

u— U

™ =€

(2) Mem. Constraints
x[j] — X; | (precond,1 < 4,
=Y, |U=X

u— U

i—1

T =4% 5]

(3) Mem. Constraints
x[j] — X; | (precond,1 < 4,
ur— U U > X,

i 2

n=475, 47,5,

(4) Mem. Constraints
x[j] — X; | (precond,1 < 4,
u— U U > Xs,3 <4,
i—3 U> X3

m=4%,5.,47,5,,4",5;

(5) Mem. Constraints
x[j] — X; (precond, 1 < 4,
u— U U > X5,3 <4,
i—4 U>X3,4<4

m=4",5_,4" 5, ,4% 5., 4F

(6) Mem. Constraints
x[j] — X; | (precond,1 < 4,
u— U U > X5,3>4,
i—3

m=4%,5.,4%,5.,4;

Figure 2. Depth-first generation of all-paths tests for the f

tions into simple ones by introducing additional conditibn
instructions.) We denote a program pathy a sequence of

Test 1: U=
Xo=0 Yy =19
X1=5 Y1 =17
X, =11 Yo=5
X3 =16 Y3 =15
o=47%,5%

Test 2: U=4
Xo=1 Yo=1
X1 = Y1 =
X,=9 Y, =10
X3 =14 Y3=9
o=4% 5"

Test 3: U=19
Xo = Yo =
Xi1=4 Y1=5
X =16 Y, =
X3=20 Y3 =4
o=4% 5%

Test 4: U=18
Xo=1 Yo=0
X =11 Yi=7
Xo=15 Yo=9
X3 =18 Y3 =11
oc=4"

(unsatisfiabli

(unsatisfiable

line numbers, e.g.

p=3,4%,5",7,4%,57.6,8

unction atU of Figure 1

Since a program path is uniquely determined by its deci- a “x” mark. If p does not contain any unmarked decision,
sions, we may abbreviate a path by the sequence of its deexit. Otherwise, ifz* is the last unmarked decision jin let
cisions only, e.gp = 47,57,4%,5%. We will mostly use 7 be the subpath gf beforez*, followed byzT (i.e. the
such abbreviated notation. The empty path is denoted by negation ofr* marked as already processed), and continue
The mark %" after a decision will indicate that the depth- to (Step 1).
first search has already completely explored its negatien, i
the other branch in the tree of all execution paths. Forexam- We see that Step 4 chooses the next partial path in a
ple, the mark %" inthe pathp = 4%,5;,4%,5" meansthat depth-first search. It changes the last unmarked decision
we have already explored all paths of the fotin 5T, ... in p to look for differences as deep as possible first, and
and tried to generate a test case for each of them. marks a decision with ax” when its negation (i.e. the other
During a test generation session, the generator maintaindranch from this node in the tree of all execution paths) has
the following data: already been fully explored. For example, if

e atable representing the program memory at every mo- p=a;,b",ct, d el
ment of symbolic execution. It can be seen as a map-
ping Symb — Val which associates a valuéal to a the lastx means that the depth-first search has already pro-
symbolic namesSymb. The symbolic namé&ymb may cessed all paths of the form
denote a variable name or an array element. The value

Val may be a constant or a Prolog logical variable. a” bt et d e
e a partial program pathr in f. If a test case is suc- The previous« (in d;") means that the depth-first search has
cessfully generated for the partial paththeno will already processed all paths of the form
designate the remaining part of the complete path it e
executes. a b, ct,dT, ...

e a constraint store containing the constraints collected The last unmarked decision jnis ¢, so Step 4 will take
by the symbolic execution of the current partial path the subpath of before this decision; , ", and add:; to
. obtain the new partial path = a, ,b", ¢, . Notice that this
way to mark conditions with ax” keeps the information
We can now describe the test generation method. It con-that some shorter partial paths have already been fully ex-
tains the following steps: plored (here, paths of the fornt", ... are fully explored),
and adds this information for the negation of the last condi-
(Init) Create a logical variable for each input and associatetjgn (here, the paths—, b+, ¢+, ... are fully explored).
it with the input. Set the initial values of initialized vari We illustrate this method on the example of functia
ables. Add constraints corresponding to the precondition. 4¢ Figure 1. This function is the simplest form of interpo-
Let the initial partial pathr be empty. Continue to (Step 1). |ation. It takes three parameters, two arrayg (each one

(Step 1) Let o be empty. The generator symbolically exe- With D integers) and an integer Let us define the precon-
cutes the partial path, that is, adds constraints and updates dition ¢.:y of atU as follows:
the memory table according to the instructions inf some

constraint fails, continue to (Step 4). Otherwise, corditau D=1, xcontains elements

y contains elements

(Step 2). 0 <x[0] < x[1] <--- < x[D—1] <Max, (taty)
(Step 2) The constraint solver is called to generate a test x[0] <u < x[D—1],

case, that is, concrete values for the inputs, satisfyieg th 0 <y[0], y[1], ..., y[D — 1] < Max.

current constraints of the constraint store. If it fails,tgo

(Step 4). Otherwise, continue to (Step 3). The valuesy[j] are supposed to be the values of some

. . function h at the pointsk[j], i.e. h(x[j]) = y[j], 0 < j <
(Step 3) Execute the instrumented version of the program D — 1. The functionatU returns the value ot in the clos-

on the test case generated in the previous step to trace thgst point to the left ofs in which the value of: is known.

complete execution path. The complete path must start byln other words, it finds the greatektwith x[k] < u and

7 (by definition of the constraint solving problem for which returnsy[k]. Max is a positive constant (for example, the

the test case was generated). Write the remaining part of the__ . : S
path intoo. Continue to (Step 4). maximal integer MAXINT of the system). For simplicity

of our example, we assunbe= 4 andMax = 20.
(Step 4) Let p be the concatenation afando. Try to find in The test generation session for the functiali is shown
p the last unmarked decision, i.e. the last decision without in Figure 2, where *-~" denotes the application of (Step 2)

and (Step 3), and-%" the application of (Step 4) and 3 All-Paths Test Generation in Polynomial
(Step 1). First, (Init) creates logical variablgs, Y; (0 < Time

j < 3)andU to represent the inputs as shown in (1) of Fig-
ure 2. The first two lines ofif..v) being now satisfied, (Init)
adds into the constraint store tBe + 3 inequalities corre-
sponding to the last three lines afy), which are denoted
by (precond in Figure 2:

In this section, we give sufficient conditions for a class of
all-paths test generation problems to be solvable in palyno
mial time. Itis intuitively clear that all-paths test geation
for a program may take much time for (one or several of)

0< Xo, Xo < X1, X1 < Xg, Xo < X3, X3 < 20, the following reasons:

Xo<U, U<Xs,
0<Yy, ... ,0<Y53,
Yo <20, ..., Ys < 20.

(t) the program has a great number of paths and, therefore,
results in a great number of constraint solving prob-
lems,

The first partial pathr being always empty, (Step 1) has (14) the instructions of the program result in complex con-
nothing to do now. Next, (Step 2) generates the first test straints which cannot be solved fast

case, Test 1. (Step 3) executes Test 1 on the instrumented
version of the program and obtains= 4%,5% (thatisan (t11) the program has very long paths giving rise to prob-
abbreviation fo3, 4*, 57). lems with too many constraints.

We are now going from (1) and Test 1 to (2) in Figure 2.
(Step 4) findsp = 41,51, where5™ is the last unmarked We show that under appropriate restrictions for these three
decision. Therefore, it sets= 41,5 . Next, (Step 1) sym- issues, all-paths test generation in polynomial time bexom
bolically executes the partial pathin constraints, node by possible.
node, for unknown inputs. The execution of the assignment In practice, the most expensive step of the all-paths test
3 addsi +— 1 to the memory table. The execution of the generation method is constraint solving in (Step 2), so we
decisiondt adds the constraint < 4 trivially true, and the ~ focus on the constraint solving time. Our experience with
execution of the decisioh~ adds the constrairlf > X;, the PathCrawler tool shows that the other steps (instrumen-
after replacing the variables u andx[1] by their current tation, translation into constraints, symbolic execugtn)
values in the memory table. Next, (Step 2) generates Test 2are done very efficiently. For example, the first module

and (Step 3) executes it and obtains- 41, 5. of PathCrawler, which instruments the program under test
We are now going from (2) and Test 2 to (3) in Fig- and translates it into constraints, takes less than or about
ure 2. (Step 4) findg = 4%,57,47,5" and setsr = minute for programs with hundreds or thousands of lines.

4t 57 47 5. (Step 1) symbolically executes (Step 2) Since the performance of these steps depends on many im-
generates Test 3, and so on. Let us now move from (4) andplementation details and appears quite satisfactory ic-pra
Test 4 to (5) in Figure 2. (Step 4) finds tice, we do not discuss it here in detail. Notice that testgen
eration time in experiments of Section 5 includes all stéps o
p=4"T5.,4" 5,41 5,4~ the test generation process, from source code to generated
test cases.

and setsr = 4%,5,,4%,5,,47, 5., 4F. The last constraint We definean all-paths test generation probleas
4 < 4 added by symbolic execution at (Step 1) is obviously

false, so the generator goes directly to (Step 4), which sets o= (P, f,v¢)

7w =4%,5,,47 5,4, . As shows (6) in Figure 2, the last

constraint3 > 4 added by (Step 1) fails again, so the gener- where P is a C program f is a function inP to be tested

ator continues to (Step 4). The steps after (6) are not showrand is a precondition off. A solution of ® is a set of

in Figure 2. Similarly, the generator will try the partialtha test cases satisfying the all-paths criterion. The preieond

7 =47%,57,47 andw = 4, which are also infeasible, and tion may contain information necessary for correct initial

stops. A test case was generated for each of the 4 feasiblézation of test generation (e.g. input array sizes, domain

paths. of variables, etc.) and any other conditions on the input
In general, if during some execution of (Step 1) or variables restricting admissible inputs 6f We denote by

(Step 2), the constraints are unsatisfiable and no test casé&® > 0 the length of the prograr?.

can be generated, thenis infeasible and the algorithm The number of possible inputs must be finite (and not

continues the exploration of other paths normally. If ithap only bounded by the available computer memory, which is

pens at (Init) or at the very first iteration of (Step 2), theti assumed sufficiently large). Indeed, if the number of inputs

the precondition is unsatisfiable, then the algorithm s&ips is unlimited, the number of paths may be unlimited and test

(Step 4) since is empty. generation of all-paths tests will not terminate. It happen

1 char LastChar(char str[]) { 1 #define D 4
2 while(*(str + 1) I=10) 2 int bsearch(int a[D], int key) {
3 str = str + 1; 3 int low=0; int high = D1,
4 return = str;, 4 while (1 ow <= high) {
5 } 5 int md=1ow+ (high-low)/2;
6 int mdVal = a[nmid];
. . 7 if (mdVal < key)
Figure 3. Funct|o.n L;stChar returns th(_a last 8 low = ni d+1:
non-zero symbol in a given non-empty string 9 else if (nmidval > key)
10 high = md-1;
11 el se
for the functionLastChar of Figure 3, which takes a non- 12 return md;
empty zero-terminated string and returns the last non-zetd }
symbol. 14 return -1;

Therefore, we assume thatbounds by somé.$ > 0 15}
the maximal length of admissible inputs fér measured in
number of bytes, or up to a constant, of integers.

We definea system of difference constrairats a system
of constraints of the form

Figure 4. Function bsearch for binary search
of a given element key in a given sorted array

a of length D
z—y<c¢c OF z<¢ OF x2>c
where z, y are integer variables andis an integer. An Sketch of proof. Assume without loss of generality that
equalityz — y = ¢ can be represented as— y < cand ¢(X,Y) is monotonic in each argument f&r > 0, Y > 0.
y—z< —c. Let® = (P, f,) be an all-paths test generation problem of

C. By (i), the all-paths test generation method dosolves
Theorem 1 ([11, 12]) A system of difference constraints at Mostgi(LE,L7) constraint solving problems. By (ii),

may be solved in polynomial timggm, n), whereg(X,Y') the constraint solving problem created for any program path
is a polynomial;n is the number of variables and is the (hence, for any partial path) @ is a system of difference
number of constraints. constraints. By (iii), the number of constraints in the syst

m < go(L%, LT). The number of variables is bounded
The reader will find various estimatesn [12]. We are by L?. It follows that the total constraint solving time is
now ready to state the main result of this section. Notice Pounded by
that the conditions (i), (ii), (iii) precisely corresponal the L2 1® < gl L2 L2
three reason§), (11), (11) stated above. 9u(Lp, L1)g(m,n) < ga(Lp, LT),
Whereg3(X7 Y) = gl(X7Y)g(92(X7Y)7Y) 0

We intentionally allow to bound the number of paths and
constraints by the length of the program, or the length of the
input, or both, because different estimates may be useful in
different examples. Notice also that the number of paths

(i) the number of program paths i for which the mentioned in (i) includes infeasible partial paths likegbo

method will try to generate a test case is bounded by seen in Se_ctlon_ 2, but does_not m_clude s_everal infeasible
an(L}{; L}.p) paths starting with the same infeasible partial path. Iddee

the depth-first method adds at most one new constraint to
(i) symbolic execution of any program path (including the those of a feasible partial path, so it never trlgs to gener-
precondition) adds only difference constraints, ate a test case for two longer paths starting with the same
infeasible partial path.
(iii) symbolic execution of any program path (includingthe ~ Let us apply Theorem 2 to an example. Consider
precondition) adds at mogb (L%, LT) constraints. the family of all-paths test generation problerps =
(Pp, atU, vaty), WhereD > 0 is a parametetf, is the pro-
Then there exists a polynomi@)(X,Y) such that the total gram of Figure 1 containing the functiartu, and the pre-
constraint solving time in the all-paths test generation fo condition,.y is defined in Section 2. The number of input
® is bounded byj; (LS, LY). variables in®; is 2D + 1, SO LT® = 2D + 1. The number

Theorem 2 Let € be a class of all-paths test generation
problems, andy; (X,Y), g2(X,Y) two polynomials. Sup-
pose that every probler® = (P, f,v) of € satisfies the
following properties:

of partial paths inP, for which the method will try to gen- visits each vertex ofr exactly once and returns to the start-
erate a test case is equal2b < L?D as required by (i). ing vertex. For example, Figure 5b represents a directed
Symbolic execution of paths fob, adds only difference graph with five verticeg0, 1, 2, 3, 4} which has a Hamilto-
constraints (hence (ii) is satisfied), wisb + 3 constraints nian cycle. We may identify a directed graph withaidja-
for the precondition andD — 1 constraints for the longest cency matrixIts elementG(i, j) is 1 if G has an arc from
path, so(3D +3) + (2D — 1) < 3L}'I’° as required by (iii). to 7, and0 otherwise. We prefer here the mathematical no-
The conditions of Theorem 2 are verified, so all-paths testtationG(i, 5), p(¢) (in roman font) to the C notatio®i][j],
generation in polynomial time is possible for this example. p[i] (written in TrueType). In lines 5-11 of Figure 5@,is
Similarly, this theorem may be applied for other interpo- the graph of Figure 5b (withv = 5 vertices) defined by its
lation functions occurring in practice, or other searchcfun adjacency matrix. The first loop in the functiéfC checks
tions in an array, such as the functierearch of binary that the elements qf are in{0,1,..., N — 1} and are all
search in a sorted array given in Figure 4. The function different (lines 15-23). It means thatis a bijection of
bsearch performs a classical binary (dichotomic) search {0, ..., N —1} onto itself, ora permutation of0, ..., N—1}.

of a given elemeritey in a given sorted array of lengthD. HC returns 1 ifp is a permutation of vertices ¢f and
It returns the index of some occurencexef; in a, or —1 if
key does not appear ia. At first glance, the assignment of p(0) = p(1) = -+ = p(N — 1) — p(0)

line 5 in Figure 4 provides a constraint that is not a differ- s 5 Hamiltonian cycle i, and 0 otherwise (lines 25-32).
ence one. In fact, for any given program path, the right-hand 1, precondition/yc is defined as:

side of the assignments in lines 3, 5, 8, 10 contain only con-
stants and no input variables, so they only require a direct p containsN elements,

ion of th lue of a variable and d dd : (uc)
computation of the new value of a variable and do not a 0<p(j) < MAXINT.

a constraint on input variables to the constraint storenduri We assume the following Conjecture 4, a consequence

sympollc eﬁecut;]on of a partial Pm,gram p:th. h _of the famousP # N P conjecture strongly believed to be
Since all-paths coverage criterion subsumes other Cri-y o and state the main result of this section.

teria such as all-branches coverage or all-statements cov-

erage [18], the following result immediately follows from Conjecture 4 ([6, Section 10.4.4]) There is no algorithm

Theorem 2. deciding in polynomial time if a given directed graph has
a Hamiltonian cycle.

Corollary 3 Let C be a class of all-paths test generation
problems satisfying the conditions of Theorem 2. Then the
total constraint solving time necessary to generate tests f
all-branches (or all-statements) coverage is polynomial.

Theorem 5 There exists no polynomial-time algorithm for
all-paths test generation problems for programs with inter
nal aliases.

Sketch of proof. Assume the contrary. Lefl be a

4 All-Paths Testing with Internal Aliases is polynomial-time algorithm that, given an all-paths test-ge
NP-hard eration problemb = (P, f, 1), generates a list

(t1,p1)s -+, (T, pr)

In thi; section we consider awidgr class of all-paths test wheret; is a test casey; is the execution path activated by
generation problems, where constraints withre allowed, executingf on ¢;, andp,. .., px are all feasible paths of

and array indices (or pointer offsets) may depend on inputf. The “polynomial-time algorithm” means that there exist
variables. Presence of unknown indices (or offsets) during z- . > 0 such that the number of steps dfis always
symbolic execution with unknown inputs leads to the prob- bc;unded by the polynomidk (L% + L?)™, where L is

. . . . P I ’ P
Igm ofmternal alllasesas we callgd them in [7]. Indeed, if 4 length of? andL? is the maximal input size.
j is an input variable or was assigned a value that depends than we can construct another algoritiiwhich, given

on some input variable, the expressigy] is a non-trivial 6 agjacency matrig: of a directed graph and its number
alias for one of the elements af Using input variables| ;] of verticesN’

as indices in the arra§ in lines 26, 28 of Figure 5a is an-
other example of internal aliases. All-paths test genemati B1) constructs a progranf; similar to that of Figure 5a
for programs with internal aliases was considered in [7] and with the givenN andG,
an extension of the method of Section 2 for such programsBQ) executesA on the problenbe = (Pe, HC,),
was proposed.

We will use the well-known Hamiltonian cycle problem. B3) says “yes” ifA has generated a test for the path return-
A Hamiltonian cyclén a directed graply is a cycle which ing 1, and “no” otherwise.

O© 0O NO UL D WN PP

WWWWNNNNNNNNNNRPRPRERPRRERERERPR
DPNPRPOOONOAREWNRPRPOOWWOWNOUDNMWRNERO

We claim thatB is a polynomial-time algorithm. Indeed,
for some constant&’; > 0, PartB1 copies some pieces of
text whose length isX K| N2. PartB2 executes the algo-

#define N 5 // nunber of vertices in graph G
typedef int graph[N[N;

typedef int perniN;
/1 graph Gis defined by its adjacency matrix :

graph G = {
0,1,0,0,0, 0 1
0,0,1,0,0, \ /
OY 0! 0! Ol 11 /4 \
1,0,1,0,1,
1,1,1,1,0 3/\2
1
i nt HC(perm p){
int i, j;
for(i =0; i <N i++){
if(pli] <0)
return O;
if(p[i] > N1)
return O,
for(j =i+l j <N j++)
ifC pli]l ==plil)
return O;
}
/1 we checked that p is a permutation of {0,...,N1}
for(i =1; i <N i++)
ifC g pli-1] [pli]] t=1)
return O;
if(g p[N-1] J[p[O]] !'=1)
return O;
/1 we checked that p defines the HamItonian cycle
/1 p(0) ->p(l) ->... ->p(N1) ->p(0) inG
return 1,
}
@) (b)
Figure 5. a) For the graph G with N vertices, statically defined by its adjacency matrix, the fu nction
HC checks if p is a permutation of vertices defining the Hamiltonian cycle p(0) = p(1) — -+ —

p(N — 1) — p(0). b) The graph G has the Hamiltoniancycle 0—1—2—4—3 — 0.

The size of the inputN, G) of B is proportional taN?: B makes< KgN?™ + K;N* + KgN? steps.
It is clear that the path returning 1 in the function HC
|G| < |(N,G)| < 2|Gl, |G| ~ N> of P is feasible if and only ifG has a Hamiltonian cy-
cle. ThereforeB is a polynomial-time algorithm deciding
if a given directed grapli- has a Hamiltonian cycle. The
contradiction with Conjecture 4 finishes the proof. O

rithm A on the problen¢; with (L + L) < K,N?, soit Theorem 5 is true even for the simplest programs, such
takes< K(KQNQ)m steps. The function HC has KsN? as that of Figure 5a, where

feasible paths, and the length of each path<isk,N2.

Part B3 reads the list of generated tests which may con- e the number of paths may be bounded by a polynomial
tain < K3N? couples(t;, p;) each of length< K5N2. So in program size, so we have a restriction oy,

atU bsearch HC
D tests time tests time N || paths| tests time
4 4 0.50s 9 0.49s 4 15 38 0.66 s
10 10 0.52s 21 0.56s 5 21 140 2.10s
50 50 1.38s 101 291s 6 28 747 19.75s
100 100 6.06 s 201 12.10s 7 36 5075 4m33s
500 || 500 | 5m39s || 1001| 6m50s 8 45 40364 | 26mb58s
1000 || 1000 | 30m46s| 2001 | 32m47s 9 55 | 362934 4h2m24s
Figure 6. Results of all-paths test generation Figure 7. Results of all-paths test generation
for functions atU of Figure 1 and bsearch of for function HC of Figure 5a (with complete
Figure 4 for different array sizes D. graphs Gy).

¢ the path length may be bounded by a polynomial in We see that test generation time for these functions with
program size as well, so we have a restriction(fgr), the PathCrawler tool grows rather slowly (clearly under-
) _ _ exponentially) with the parametdr. So, as it can be
» the function under tesf contains only integers, arrays, expected by Section 3, all-paths test generation remains
conditionals, assignments and loops with a fixed num- yractaple for such programs with hundreds and even thou-
ber of iterations, sands of input variables, and PathCrawler provides an effi-
cient test generation method for these programs.

On the other hand, Figure 7 shows experimental results
for the functionHC of Figure 5a with the complete ordered
graphGy with N vertices (i.e. in which there is an arc
fromi to j for any verticeg, j). The column “paths” shows

In this example, the complexity of all-paths test generatio th_e number of feasible paths. Here, in presence of internal
is due to({1), i.e. the form of the constraints, which include aliases, PathCrawler generates superfluous test cases. (Ba
internal aliases angt. sically, it introduces additional choice points for alias@d

Remark. We have actually shown that the all-paths test explores all possible combinations when it tries to cover a
generation problem is NP-hard, i.e. at least as difficult as Program path which it cannot cover otherwise, see [7]).
the Hamiltonian cycle problem or any other NP-complete As predicted in Section 4, we see that test generation
problem. A specialist in complexity theory will notice that time grows extremely fast (nearly factorially), and alk=
our sketch of proof may be transformed into a strict proof, test generation becomes intractable alreadyNor> 10.
since a computer may be simulated by a Turing machine inFor incomplete graphg:, the number of tests and gen-
polynomial time, and vice versa [6, Section 8.6]. An appro- €ration time are different, but their growth remains over-
priate representation fa¥ andp will solve the problem of ~ €Xponential.

big values overpassing the word length on our computer. We also tried a very similar example from a piece of in-
dustrial code with several hundreds of lines of C code (that

we cannot describe here in detail due to intellectual prop-
erty issues), where inputs were also used as indices in a
two-dimensional array. We obtained similar results: all-

In this section we provide some experiments with the paths test generation becomes intractable already for pro-
PathCrawler tool to illustrate the results of all-pathst tes grams with about 20 input variables.
generation for some classes of programs considered in Sec-
tions 3 and 4. The experiments were made on an Intel Cor
2 Duo laptop with 1Gb RAM.

Figure 6 shows the experimental results for two func-
tions, atU of Figure 1 antbsearch of Figure 4, for differ- All-paths test generation is often believed intractablg, b
ent values of parameter D. For each value of paraneter neither a characterization of programs for which it would
the columns “tests” and “time” show the number of gener- be tractable, nor a description of program features that can
ated test cases and test generation time. Here, PathCrawlgnake test generation intractable were really provided. It
generates exactly one test for each feasible path, so the nunseems important to be able to answer these questions.
ber of feasible paths is equal to the number of tests. This paper addresses the problem of evaluation of po-

e f contains no function calls and rexternal aliases
(which appear wheryf contains pointer inputs and
some memory location is reachable in two different
ways from the inputs, see [7]).

5 Experiments

e6 Conclusion and Future Work

tential complexity of all-paths test generation for vasou
classes of programs. Using Pratt’s result on solving differ

ence constraints [11], we proved a theorem providing suf-

ficient conditions for a class of programs to allow all-paths
test generation in polynomial time. It shows for the first
time that, contrary to what is often believed, all-pathg-tes

ing can be tractable for some classes of programs occurring

in practice.
We also showed by an original reduction from the Hamil-

tonian cycle problem that all-paths test generation for a
wider class of programs, where array indices and pointer

(5]

(6]

(7]

offsets may depend on the inputs, is intractable (NP-hard). [8]

It gives a concrete example of program features that can

prevent all-paths test generation to be feasible. We mgt thi
situation in an industrial example. These results wers-llu
trated by some experiments using the PathCrawler testing [9]

tool.

Future work includes more detailed analysis of the effect

of various features of programming languages on test gener-
ation under different restrictions appearing in practitiee
existence of polynomial-time algorithms for solving other
types of constraints (such as range constraints) [12, 1¢] ma
provide other positive results for test generation that wil
help to better understand the applicability of all-pattst-te
ing in practice.

We can expect that exhaustive all-paths testing will be in-
tractable in various cases, but test generation for otisér te 1,
coverage criteria (all statements, all branches, etc.) loeay
easier. We believe that this study will help test enginers t
anticipate the computability and complexity of test genera [13]

tion and choose an appropriate test coverage criterion for a

particular code.

Acknowledgments. The author thanks &astien Bardin,
Bernard Botella, Mickél Delahaye, Philippe Herrmann,
Bruno Marre and Nicky Williams for useful discussions.

References

(1]

(2]

(3]

(4]

S. Bardin and P. Herrmann. Structural testing of executa-
bles. Inthe First IEEE International Conference on Soft-
ware Testing, Verification, and Validation (ICST'0®gages
22-31, Lillehammer, Norway, April 2008.

B. Botella, M. Delahaye, S. Hong-Tuan-Ha, N. Kosmatov,
P. Mouy, M. Roger, and N. Williams. Automating struc-
tural testing of C programs: Experience with PathCrawler.
In the Fourth International Workshop on the Automation of
Software Test (AST'09¥ancouver, Canada, May 2009.

C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler. EXE: automatically generating inputs of death. In
the 13th ACM Conference on Computer and Communica-
tions Security (CCS’06)pages 322—335, Alexandria, Vir-
ginia, USA, November 2006.

R. Ferguson and B. Korel. The chaining approach for
software test data generationACM Trans. Softw. Eng.
Methodol, 5(1):63-86, 1996.

(10]

(11]

(14]

[15]

(16]

(17]

(18]

P. Godefroid, N. Klarlund, and K. Sen. DART: Directed au-
tomated random testing. the ACM SIGPLAN 2005 Con-
ference on Programming Language Design and Implemen-
tation (PLDI'05), pages 213-223, Chicago, IL, USA, June
2005.

J. E. Hopcroft, R. Motwani, and J. D. Ulimanlntroduc-
tion to Automata Theory, Languages, and Computation (2nd
Edition). Addison Wesley, November 2000.

N. Kosmatov. All-paths test generation for programs with in-
ternal aliases. Ithe 19th International Symposium on Soft-
ware Reliability Engineering (ISSRE’Q8pages 147-156,
Redmond, WA, USA, November 2008.

N. Kosmatov. Artificial Intelligence Applications for Im-
proved Software Engineering Development: New Prospects
chapter XI: Constraint-Based Techniques for Software Test-
ing. Advances in Intelligent Information Technologies Book
Series. IGI Global, 2009. ISBN: 1605667587.

B. Marre and A. Arnould. Test sequences generation from
Lustre descriptions : GATeL. Ithe 15th IEEE International
Conference on Automated Software Engineering (ASE’'00)
pages 229-237, Grenoble, France, September 2000.

G. C. Necula, S. McPeak, S. Rahul, and W. Weimer. CIL:
Intermediate language and tools for analysis and transforma-
tion of C programs. Ithe 2002 International Conference on
Compiler Construction (CC'02pages 213-228, Grenoble,
France, Apr. 2002.

V. Pratt. Two easy theories whose combination is hard.
Technical report, MIT, Cambridge, Massachusetts, USA,
September 1977.

G. Ramalingam, J. Song, L. Joskowicz, and R. E. Miller.
Solving systems of difference constraints incrementaly.
gorithmicg 23(3):261-275, 1999.

K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit
testing engine for C. Inthe 5th joint meeting of the Eu-
ropean Software Engineering Conference and ACM SIG-
SOFT Symposium on the Foundations of Software Engi-
neering (ESEC/FSE’'0O5pages 263-272, Lisbon, Portugal,
September 2005.

Z.Suand D. Wagner. A class of polynomially solvable range
constraints for interval analysis without wideningsheor.
Comput. Scj.345(1):122-138, 2005.

N. Williams, B. Marre, and P. Mouy. On-the-fly generation
of k-paths tests for C functions : towards the automation of
grey-box testing. Ithe 19th IEEE International Conference
on Automated Software Engineering (ASE,Qgages 290—
293, Linz, Austria, September 2004.

N. Williams, B. Marre, P. Mouy, and M. Roger.
PathCrawler: automatic generation of path tests by combin-
ing static and dynamic analysis. the 5th European De-
pendable Computing Conference (EDCC’0bages 281—
292, Budapest, Hungary, April 2005.

Z. Xu and J. Zhang. A test data generation tool for unit
testing of C programs. Ithe 6th International Conference
on Quality Software (QSIC'06)pages 107-116, Beijing,
China, October 2006.

H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit
test coverage and adequacyACM Computing Surveys
29(4):366-427, 1997.

